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ABSTRACT

Although researchers have widely studied the analysis and modeling of error sources on Global Navigation Satellite 
Systems positioning, some of these errors have not been eliminated significantly. Only some of the Global Navigation 
Satellite System’s data are modeled. The present work was undertaken to determine the effect of different variables: sea-
son, the number of visible satellites, and dilution of precision on the efficiency of horizontal and vertical CORS (Conti-
nuously Operating Reference Stations) positioning. The CORS data was collected at 14 different test points during 600 
epochs with 1-second intervals for this aim. Factorial designs supply an efficient solution to understand the impact of 
several factors on a response variable. A full factorial design with three factors at two levels was applied for these pur-
poses. The main and the interaction effects of factors were analyzed on the CORS horizontal and vertical positioning. 
According to the full factorial design results, while all main and interaction effects of factors significantly affected the 
CORS horizontal positioning error, some elements did not affect the CORS vertical positioning error. Also, the regres-
sion equations were obtained for all situations to investigate the other level of selected factors in the response variables.

Estudio de modelado por diseño factorial en posicionamiento de Sistemas Globales de Navegación Satelital

RESUMEN

A pesar de que los investigadores han analizado y modelado ampliamente  las fuentes de error de posicionamiento en 
los Sistemas Globales de Navegación Satelital (GNSS, Global Navigation Satellite System), algunos de estos errores no se 
han eliminado significativamente. Y solo parte de esta información de los Sistemas Satelitales de Navegación Global ha 
sido modelada. Este trabajo se realiza con el fin de determinar los efectos de diferentes variables: temporada, número de 
satélites visibles, e imprecisión en la eficiencia de posicionamiento horizontal y vertical CORS  (estaciones de referencia 
en funcionamiento continuo). La información CORS se recolectó en 14 escenarios de prueba durante 600 períodos y 
con intervalos de un segundo para este objetivo. Los diseños factoriales proveen una solución eficiente para entender 
el impacto de varios factores ante una respuesta variable. En este trabajo se aplicó un diseño factorial completo con 
tres factores en dos niveles. Los efectos principales y de interacción de factores se analizaron con el posicionamiento 
CORS horizontal y vertical. De acuerdo con los resultados del diseño factorial completo, mientras que los efectos 
principales y de interacción de factores afectaron significativamente el error de posicionamiento horizontal, algunos 
efectos principales y de interacción de factores no afectaron el posicionamiento vertical CORS. También las ecuaciones 
de regresión se obtuvieron para todas las situaciones con el fin de investigar los otros niveles de factores seleccionados 
en la respuesta de variables.
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Introduction

Global Navigation Satellite Systems (GNSS) have been commonly 
used for positioning for decades. However, the positioning accuracy obtained 
by the GNSS is prone to error sources, which can be primarily categorized as 
clock-related errors, signal propagation errors, system errors, and intentional 
errors (selective availability and signal jamming etc.) (Karaim et al., 2018). The 
quality of the obtained positioning accuracy is expressed with two metrics. The 
first metric is the user equivalent range error (UERE) that defines the total errors 
on the pseudorange. The range between satellites and the receiver is called the 
pseudorange due to the noise and errors. The second quality metric is the dilution 
of precision (DOP) that specifies the effect of geometry on the relationship 
between positioning and measurement (Chen et al., 2013; Li et al., 2018; Teng 
et al., 2015; Teng & Wang, 2016). Accurate positioning can be obtained with 
the good spatial spread of the visible satellites that provide lower DOP values 
(Banerjee & Bose, 1996; Verma et al., 2019). DOP is utilized for the optimum 
selection of visible satellites (Teng & Wang, 2014) and is categorized as the 
horizontal dilution of precision (HDOP), vertical dilution of precision (VDOP), 
and time dilution of precision (TDOP). The combination of HDOP and VDOP 
is named position dilution of precision (PDOP), and the variety of PDOP and 
TDOP is called the geometric dilution of precision (GDOP).

Global Positioning System (GPS) is still the most reliable satellite-based 
positioning system designed to have at least six satellites at any part of the Earth 
(Busznyák et al., 2019; Wang et al., 2011). However, in some environments 
such as urban areas, heavy tree cover, open-pit mines, etc., the desirable number 
of GPS signals cannot reach the receiver due to the signal blockage by obstacles 
(Alkan et al., 2015). In this case, a weak or no positioning solution can be 
obtained. In the last decades, multi-GNSS solutions have been investigated 
to exceed this limitation and acquire more accurate and reliable positioning 
results (Alkan et al., 2017). In the last years, multi-constellation solutions have 
been worked with GPS/GLONASS, GPS/BEIDOU, GPS/GALILEO, GPS/
GLONASS/BEIDOU, GPS/GLONASS/GALILEO, and GPS/GLONASS/
GALILEO/BEIDOU in many studies. The multi-constellation positioning 
ensures improved positioning solutions using more visible satellites with better 
geometric distribution and more satellite availability (Wang et al., 2019).

The tropospheric and ionospheric errors are the two primary error sources 
related to signal propagation. The seasonal changes of atmospheric variables 
like temperature, water vapour, hydrostatic pressure, and humidity significantly 
affect these errors. The effect of seasonal variation on the GNSS accuracy was 
analyzed by Dogan et al. (2014). They concluded that the GNSS positioning 
accuracy in summer is better than that in winter. Additionally, Saracoglu & Sanli 
(2020) studied the effect of seasonal changes on GNSS positioning in different 
world regions. They concluded that the seasonal impact on positioning accuracy 
changes according to climate zones. In Zheng et al. (2018), zenith tropospheric 
delay accuracy was investigated on the GNSS data. The results showed that the 
accuracy in winter is better than in the other seasons. Many seasonal atmospheric 
factors affect GNSS signals quality and positioning. Therefore, the results of the 
seasonal effects on GNSS positioning accuracy differ from the others.

The analysis of the GNSS measurements is critical in geodesy due to 
working conditions in the field. Some experiments can be performed, and the 
results can be investigated to shorten the working time in the field. In the process 
of obtaining measurements, a lot of factors affect the GNSS measurements. 
The experimental design methods can be used frequently to determine the 
significant factors on the response variable. The primary and interactive effects 
of dependent variables (x) can be determined using the experimental design 
process on the response variable (y). The statistical analysis and graphical 
presentation make the interpretation of the results easier. Also, a suitable 
experimental design model will reduce the required data and spend time on the 
field (Çoruh et al., 2012; Seltman, 2018).

There are different experimental designs such as Full Factorial, Plackett-
Burman, Tagucci Box–Behnken design, and central composite design 
(Gündoğdu et al., 2016). Full factorial design (FFD) is a widely used procedure 
to determine dependent variables’ primary and interactive effect on the response 
variable in different levels, such as 2p, 2p-k, 3p (George et al., 2005; Navidi, 2008; 
Sisman, 2014a).

The experimental design has been used in many engineering applications. 
Geomatics engineering uses many types of application data from different 
sources for positioning. The size of application data has increased a lot in recent 

years, and therefore the analysis of application data has become more critical. 
Experimental design is one of the analyzing methods of application data, but 
the experimental design is limited in geomatics. The main aim of this study is to 
investigate the factorial effects of the season, the number of satellites, and DOP 
on the CORS horizontal and vertical positioning errors using FFD. Although 
there are some studies in geodesy that have investigated the factor effects on 
the GNSS positioning (Abad & Suárez, 2004; Ahmad, 2015; Brenneman et al., 
2010; Cai & Gao, 2007; Catania et al., 2020; Pirti, 2008; Raghunath et al., 2011; 
Stone & Powell, 1998; Svabensky & Weigel, 2004; Wielgosz et al., 2019; Wing 
et al., 2008; Yoshimura & Hasegawa, 2003), there is no study in literature for 
network-real-time-kinematic (NRTK) using FFD. The factorial effects at two 
levels were studied using a 23 FFD in this study. The regression equation as y 
= f(x) was obtained from the NRTK horizontal and vertical positioning error 
results.

The rest of this paper is organized as follows. In section 2, GNSS 
positioning and the factorial design are explained in detail. The results and 
discussions are presented in Section 3. Finally, the conclusions are given in 
Section 4.

Material and Methods

GNSS Positioning

This study was conducted along a 280 km long route from Samsun to the 
Kırıkkale provinces of Turkey. Fourteen geodetic points were established with 
20 km intervals through the course. The locations of geodetic points and the 
stations of the Continuously Operating Reference Stations Network of Turkey 
(called CORS-TR or TUSAGA-AKTIF) around the geodetic points are shown 
in Figure 1.

Figure 1. Study area.

TUSAGA-Aktif delivers real-time GNSS correction data to the receivers 
of NRTK systems 24/7 like the other countries. TUSAGA-Aktif system was 
established with 146 reference stations using baselines ranging 70-100 km 
across Turkey and Northern Cyprus (Aykut et al., 2015; Gülal et al., 2013). This 
system transmits the correction data with Virtual Reference Stations (VRS), 
Flachen Korrectur Parameter (FKP), and Master Auxiliary Concept (MAC) 
techniques in GSM, Networked Transport of RTCM via Internet Protocol 
(NTRIP), and radio connections by Radio Technical Commission for Maritime 
Services (RTCM) 3.0 and higher protocol (Bakici et al., 2017). The obtained 3D 
coordinates are in the International Terrestrial Reference Frame 1996 (ITRF96) 
datum and 2005.0 epoch with cm-level accuracy (İlçi, 2019).

A Trimble R10 GNSS receiver for GNSS observations was used. The 
site surveys were conducted in two different periods (winter and summer) to 
determine the seasonal effect on GNSS measurement accuracies. In winter, the 
site surveys were conducted on two consecutive days (December 1st and 2nd, 
2017), and site surveys in summer were executed on June 2nd and 3rd, 2018. 
The GNSS receiver was mounted on the geodetic points to determine the 
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reference position of the sites in the winter and summer periods. (Soler et al., 
2006) revealed that 2-hour static sessions are sufficient to obtain the desired 
accuracy for 280 km baseline length between the base and the rover stations. 
(Firuzabadì & King, 2012) obtained mm level horizontal and vertical precisions 
where the baseline lengths were less than 200 km in 2 hours. In this study, taking 
into account the baseline lengths between 1 to 100 kilometres and the open 
sky area conditions, we determined the GNSS static observation duration as 
100 minutes. Simultaneously, the receiver was connected to the TUSAGA-
Aktif service and the CORS data were collected for 10 minutes with 1-second 
intervals, and the elevation mask was set to 10 degrees. Although the TUSAGA-
Aktif service only transmits the correction data related to GPS and GLONASS 
constellations, we have observed all GPS, GLONASS, GALILEO, BEIDOU, 
and QZSS constellations at all geodetic points for further analyses.

2.2 Factorial Design
The factorial design investigates the effect of two or more factor levels 

on the response variable using designed experiments. Thus, the mathematical 
model can be obtained between the main and interactive effects of factors and 
response variables; also, the time, effort, and operational cost can be reduced 
(George et al., 2005; Ismail et al., 2008; Montgomery, 2001; Navidi, 2008). 
If the factors have a main or interactive effect on the response variable in the 
experimental design, their results can be determined as significant. Although 
there are several factorial design methods, the 2p FFD is the most preferred 
method. 2 and p show different levels and the number of factors, respectively 
(Box et al., 2005; Gygi et al., 2006; Ismail et al., 2008; Wu & Hamada, 2009).

The two aims were realized by FFD. One of them is mathematical 
model development between selected factors and response variables. This 
mathematical model is a regression equation, including main and interactive 
effects, given in Equation (1).

 (1)

Here; b0, bi, and bij are the main and interactive effects’ coefficients;  and  
are the factors; ε is the error of the mathematical model. The second aim of 
FFD is to test significance of factors on the obtained mathematical model. In 
this stage, the null and alternative hypotheses are established. The main and 
interactive effects of factors are tested according to the selected significance 
level using the analysis of variance (ANOVA). More details of FFD can be 
found in (George et al., 2005; Gygi et al., 2006; Montgomery, 2001; Navidi, 
2008).

Results and Discussion

In this study, the season, number of satellites, and DOP data were taken 
as factors; the CORS’s horizontal and vertical positioning errors were taken as a 
response variable, and 23 FFD was established. The level of factors was taken as 
high (+1) and low (-1). The levels of the season, satellite number and DOP were 
selected for summer as (high) and for winter as (low); >15 (high) and <15 (low); 
<1.4 (high) and >1.4 (low), respectively. The high (+1) and low (-1) levels of 
factors are shown in Table 1.

Table 1. The levels of factors.

Factor Low Level (-1) High Level (+1)

Season (X1) Winter Summer

Satellite Number (X2) <15 >15

DOP (X3) >1.4 <1.4

The design matrix of application data was taken from the data obtained from 
CORS-TR, as explained in Section 2.1 (Table 2). Minitab 16 statistical software 
was used for all the analyses of the experimental process (Minitab, 2021).

Table 2. The design matrix of application data.

Run 
No.

Factor RMS

X1 X2 X3

Horizontal
Errors (mm)

Vertical
Errors (mm)

1st Trial 2nd Trial 1st Trial 2nd Trial

1 Winter <15 >1.4 15.2 15.3 20.6 20.8

2 Summer <15 >1.4 10.1 10.2 16.5 16.7

3 Winter >15 >1.4 9.11 9.6 14.3 14.6

4 Summer >15 >1.4 10.4 11.0 17.0 17.9

5 Winter <15 <1.4 10.1 10.3 15.3 15.7

6 Summer <15 <1.4 10.3 10.5 15.8 17.5

7 Winter >15 <1.4 10.5 11.1 16. 3 17.8

8 Summer >15 <1.4 9.2 9.9 15.0 16.0

The descriptive statistic is a supply to understand the data by users 
using central tendency (mean, median, mode, quartiles) or variability (range 
variance, skewness, etc.) (Sharma, 2019). There are several graphical methods 
to represent the descriptive statistic parameters (Potter, 2006). The box plot 
analysis of application data was realized (Table 3 and Fig. 2).

Table 3. Results of the descriptive statistical analysis of application data.

Application
Data

Mean
(mm)

St.Dev.
(mm)

Minimum
(mm)

Median
(mm)

Maximum
(mm)

Horizontal 
Errors 10.8 1.8 9.1 10.3 15.3

Vertical 
Errors 16.7 1.9 14.3 16.4 20.8

Figure 2. The box plot of application data. The box plot represents that the min, 
max, Q1 (%25), Q2 (median), Q3 (75%) and mean values of application data.

Firstly, the mathematical model was obtained for the application data 
(Table 4). The significance of factors was determined using a hypothesis test. If 
the P-value of the factor is bigger than the significance value (selected as %5 in 
this study), it is decided that the factor is insignificant in the regression model.

In Table 4, Coef. and P-values, S and R-sq represent the regression 
equation coefficient, the student-test value of factors, standard deviation and the 
ratio of explained variation to total variation, respectively. It was seen that all 
main and interactive factors except X1 and X1*X3 on the vertical positioning had 
a significant effect on the response variable. In this case, the insignificant term 
should be removed, and the regression coefficient determined with substantial 
factors. The regression equation of the response variable, for horizontal and 
vertical positioning, is given according to Equations 2 and 3, respectively.

St.Dev
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 (2)

 (3)

The response variable can be increased or decreased according to the 
multiplication of coefficients and the levels of factors. Since the CORShor. and 
CORSver. are supposed to decrease; this multiplication is desired to have a 
negative sign.

In this study, the main effects should have negative signs in Equation 2 
and Equation 3. Therefore, the level factors can be taken as (+1) for equations 
2 and 3 for the main effects. On the other hand, the interactive effects of factors 
should be considered. According to the magnitude of coefficients in Equation 2, 
since the coefficients of X1*X2 and X2*X3 are bigger than X1 and X3 coefficients 
and the coefficient of X1*X2*X3 are the maxima the X1, X2, and X3 should be 
taken as (-1), (+1) and (-1). Also, according to the magnitude of coefficients in 
Equation 3, since the coefficients of X2*X3 is bigger than X2 and X3 coefficients 
and the coefficient of X1*X2*X3 is the maximum, the X1, X2, and X3 should be 
taken as (-1), (+1) and (-1).

The R2 is the rate of explained variability and total variability and 
describes the goodness of fit for the model (Mason et al., 2003; Seltman, 2018; 
Sisman, 2014b). In this study, R2 was equal to 98.56% and 92.91% for the 
CORS horizontal and vertical positioning errors, respectively. This means that 
98.56% and 92.91% of the application data can be explained with the obtained 
mathematical model.

Moreover, the ANOVA test is realized in the FFD. The ANOVA results of 
horizontal and vertical CORS positioning errors were obtained for application 
data (Table 5). It is decided that the effect has a significant impact on the response 
variable if the P-value is more powerful than the selected significance value (5%).

In table 5, DF, Adj SS, Adj MS, P-Value represent the degrees of freedom, 
adjusted sums of squares, adjusted mean squares, the fisher-test value of factors, 
respectively. Some graphical representations such as the Normal Plot of the 
Standardized Effects can also obtain the effects of factors on the response variable. 
The normal probability plots are used to estimate the significance of interaction 
effects in a factorial design (Kavuri et al., 2009). The magnitude, direction, and 
importance of the effects can be determined using the normal probability plot of 
the effects. Figure 3 illustrates the Normal Plot for application data.

Figure 3. Normal plot for horizontal (left) and vertical (right) CORS positioning.

If the effects are close to the distribution fit line, they have no significant 
impact on the response variable. It was also seen that although all main and 
interactive results were significant on the CORS horizontal positioning error, 
the X1 and X1*X3 effects were not significant on the CORS vertical positioning 
error. The change effect of the factor level can be seen with the main effect 
plots. The main effect plots are given in Figure 4.

Figure 4. Main effects plot for CORS horizontal (left) and vertical (right) 
positioning error.

It was determined that the (+1) level of all factors had reduced the 
horizontal and vertical CORS positioning errors. Also, it was seen that the X1 
(i.e. the seasonal effect) was not a significant effect on the response variable of 
the vertical component. Since the effects have a high slope, it is decided that 
selecting factor levels is suitable for this study.

The interactive effect of the factor level can be obtained from Interaction 
Plot. For this study, the interaction plots were given in Figure 5.

Table 4. Estimated effects and coefficients for CORS horizontal (left) and vertical (right) positioning errors.

Term Effect Coef. P-Value Term Effect Coef. P-Value
Constant 10.8110 0.000 Constant 16.740 0.000

X1 -1.2030 -0.6015 0.000 X1 -0.392 -0.196 0.288
X2 -1.4069 -0.7035 0.000 X2 -1.259 -0.629 0.006
X3 -1.1158 -0.5579 0.000 X3 -1.140 -0.570 0.011

X1*X2 1.2480 0.6240 0.000 X1*X2 1.097 0.549 0.013
X1*X3 0.7005 0.3502 0.002 X1*X3 0.175 0.087 0.625
X2*X3 1.2840 0.6420 0.000 X2*X3 1.483 0.742 0.003

X1*X2*X3 -1.9609 -0.9804 0.000 X1*X2*X3 -2.436 -1.218 0.000
S=0.299 R-sq=98.56% S=0.688 R-sq=92.91%

Table 5. ANOVA for horizontal (left) and vertical (right) CORS positioning.

Source DF Adj SS Adj MS P-Value Source DF Adj SS Adj MS P-Value
X1 1 5.7893 5.7893 0.000 X1 1 0.6132 0.6132 0.288
X2 1 7.9177 7.9177 0.000 X2 1 6.3372 6.3372 0.006
X3 1 4.9800 4.9800 0.000 X3 1 5.1951 5.1951 0.011

X1*X2 1 6.2300 6.2300 0.000 X1*X2 1 4.8155 4.8155 0.013
X1*X3 1 1.9627 1.9627 0.002 X1*X3 1 0.1225 0.1225 0.625
X2*X3 1 6.5947 6.5947 0.000 X2*X3 1 8.7977 8.7977 0.003

X1*X2*X3 1 15.3799 15.3799 0.000 X1*X2*X3 1 23.7319 23.7319 0.000
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It was seen that while only the X1*X3 interaction does not have a 
significant effect on the CORS vertical positioning error, the other interaction 
effects were substantial in both the CORS horizontal and vertical positioning 
errors. If the 2-effect factor levels have the same slope, it will not be meaningful 
on the result variable. The main results of the study can be summurazed as 
follows;

• R2 values were satisfactory (98.56% for CORS horizontal, 92.91% 
for CORS vertical positioning errors).

• All main and interactive effects of factors were significant on CORS 
horizontal positioning errors at the 5% level.

• Season (X1) and Season*DOP (X1*X3) effects of factors were 
insignificant on CORS vertical positioning errors at the 5% level.

• The 3-way interaction effect Season*Satellite 
Number*DOP(X1*X2*X3) had the most significant coefficient on the regression 
models of CORS horizontal and vertical positioning errors.

Conclusions

This study aimed to investigate the effects of factors on CORS positioning 
using statistical design experiments. For this, a 23 full-factorial design (three 
factors at two levels) was established to evaluate the main and interaction 
effects of season, the number of satellites, and DOP on the CORS positioning. 
The main conclusions for the study are shown below:

• The minimum values of CORS horizontal and vertical positioning 
errors were 9.1 mm and 14.3 mm in the case of the winter season, bigger than 
15 satellite numbers, and bigger than 1.4 DOP, respectively.

• The maximum values of CORS horizontal and vertical positioning 
errors were 15.3 mm and 20.8 mm, in the case of the winter season, lower than 
15 satellite numbers, and bigger than 1.4 DOP, respectively.

• The factors levels should be taken as (+1) levels (Summer, >15, 
and < 1.4) considering the main effects of factors. But it is seen that when the 
interactive effects were added to the regression model, the factors should be 
taken as (-1) levels for Season and DOP, (+1) level for the number of satellites.

• The value of CORShor. was calculated 9.6 mm with (+1) levels 
(Summer, >15 and <1.4) of factors. But the value of CORShor. was calculated 
9.4 mm with (-1) levels (Winter and >1.4) of seasons and DOP and (+1) level 
(>15) of the number of satellites because of the interactive effects of factors on 
the response variable.

• While the value of CORSver. is calculated 15.6 mm (+1) levels 
(Summer, >15 and <1.4) of factors. But the value of CORShor. was calculated 
14.1 mm with (-1) levels (Winter and >1.4) of seasons and DOP and (+1) level 
(>15) of the number of satellites.

• In the light of these explanations, it can be said that the main and 
interactive effect of the number of satellites was always (+1) levels (>15); the 
other factor levels (seasons and DOP) can be changed for application data.

Many different application data sources must be analyzed attentively in 
applied sciences such as geomatics engineering. It is seen that the experimental 
design is quite helpful and practical for positioning applications, as it 
demonstrates the factor effects on positioning error. The statistical analysis and 
graphical presentation of the experimental setup are easier to understand the 
application data. Also, the regression equations derived from the experimental 
design allow investigating different levels of selected factors on the CORShor. 
and CORSver. easily. It is suggested that the experimental design studies must 
be carried out in other areas of geomatic engineering such as remote sensing, 
photogrammetry and surveying.
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