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ABSTRACT

Structural attributes are fundamental biophysical parameters of forests, useful for environmental monitoring and plan-
ning. Canopy height (CH) is an important input for estimating several biophysical parameters such as aboveground 
biomass and carbon stocks, and can be associated with forest degradation, deforestation, emission reduction. Thus, 
an accurate CH estimation is a crucial issue in climate change, helping to increase biomass estimation accuracy, and 
support REDD+ initiatives. Very-high-resolution (VHR) imagery from unmanned aircraft systems (UAS’s) have been 
studied as a low cost means for CH estimation at local scales, however, estimation the accuracy is a factor that deter-
mines its effectiveness. We evaluated the ability of VHR imagery from UAS’s to derive structural attributes, specifically 
tree-crown area and height, in a tropical forest fragment located in the foothills of the Andes, in the humid tropical 
forests of the region known as Biogeographic Chocó in Colombia South America. We used a structure from motion 
(SfM) approach to derive the forest fragment’s CH, and we applied mean-shift algorithms to identify single tree crowns. 
We performed accuracy assessment using tree height derived from field campaigns and visual interpretation of VHR 
imagery. Results showed a RMSE of 3.6 m of the canopy height model (CHM) with a R2 = 0.75; the total accuracy for 
delineating tree crowns was 73.9%. We found that using VHR imagery collected by UASs, specific trees and canopy 
gaps can be identified in forest fragments, which is an important step to determine forest structure.
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Palabras Claves: Imágenes UAS, delineación de copa, 
altura del bosque, modelos de altura del dosel (CHM), 
REDD+

Estimación de atributos estructurales en un fragmento de bosque tropical natural utilizando imágenes de muy alta  
resolución obtenidas con sistemas aéreos no tripulados

Los atributos estructurales son parámetros biofísicos fundamentales de un bosque, útiles para el monitoreo y la plani-
ficación ecológica y ambiental. La altura del dosel de un árbol es un insumo importante para la estimación de varios 
parámetros biofísicos como la biomasa aérea y las reservas de carbono, y puede relacionarse con la degradación forestal, 
la deforestación y la reducción de emisiones. Por lo tanto, una estimación precisa de la altura del dosel es un tema crucial 
en los estudios de cambio climático y las iniciativas REDD+. Las imágenes VHR de sistemas de aeronaves no tripuladas 
se han estudiado como un medio de bajo costo para la estimación de la altura del dosel a escalas locales, pero la precisión 
en su estimación es un factor que determina su utilidad. Se evaluó la capacidad de las imágenes VHR de los sistemas de 
aeronaves no tripuladas para derivar atributos estructurales, específicamente el área y la altura de las copas de los árboles, 
en un fragmento de bosque tropical natural ubicado en las estribaciones de la Cordillera de los Andes, en los bosques tro-
picales húmedos de la región conocida como Chocó Biogeográfico, Sudamérica. La región es una de las áreas con mayor 
biodiversidad del mundo y tiene un alto nivel de endemismo, pero también tiene el mayor riesgo de pérdida de recursos 
naturales. Se usó un enfoque de estructura a partir de movimiento para derivar modelos de altura del dosel del fragmento 
de bosque, y se aplicaron algoritmos de desplazamiento medio para identificar las copas de árbol. La evaluación de la 
precisión se realizó utilizando datos de referencia derivados de campañas de campo e interpretación visual de imágenes 
VHR. El error cuadrático medio estimado de la población de errores verticales para el modelo de altura del dosel fue 
de 3,6 m. La precisión total para delinear las copas de los árboles fue del 73,9%. Se encuentra que utilizando imágenes 
VHR, se pueden identificar y monitorear fácilmente árboles específicos y brechas, lo cual es un paso importante en los 
programas de conservación. También se discute la utilidad de estos hallazgos en el contexto de bosques fragmentados y 
las compensaciones entre el precio de un sistema LIDAR y la precisión de este enfoque.
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1. Introduction

Forests currently cover one-third of the global land area (Michez et 
al., 2016), and contain 70% – 90% of terrestrial biomass, making them a key 
global carbon sink (Drauschke et al., 2014; Dandois et al., 2015). Tropical 
forests play a crucial role in global cycles (e.g., hydrological or biochemical 
cycles), contribute to global economy and welfare (Pan et al., 2011; Sasaki et 
al., 2011), and harbor around two-thirds of all known species (Paneque-Gálvez 
et al., 2014). Forests in tropical countries have been recognized for their role in 
carbon storage by the United Nations Collaborative Programme on Reducing 
Emissions from Deforestation and Forest Degradation (UN-REDD+) and their 
high biodiversity by the Convention on Biological Diversity (CBD). Detecting 
forest degradation is a particularly difficult challenge because of the high 
level of detail required to identify subtle or gradual changes caused by wood 
extraction, selective logging, or loss of species richness (GOFC-GOLD, 2017). 
This has resulted in a greater need for monitoring and capturing information 
on tropical forests. Describing structural characteristics of forests has become 
an essential prerequisite for management and monitoring (Bonnet et al., 2013), 
especially in tropical countries to achieve effective REDD+ implementation. In 
addition, there are potential co-benefits for biodiversity conservation, climate 
change mitigation, and livelihood support (Paneque-Gálvez et al., 2014).

Natural resource managers who characterize forest structure exploit the 
dendrological and dendrometric characteristics of forests, including height, 
basal area, and volume (White et al., 2013). Canopy height (CH) is undoubtedly 
one of the most important structural characteristics for forest planning. CH 
provides the basis for determining the attributes of trees and stands (Bonnet et 
al., 2017) because it correlates strongly with volume, biomass, carbon stock, 
and productivity (White et al., 2013; Dandois and Ellis, 2013; Steinmann et al., 
2013; Lisein et al., 2013). Vegetation height also provides essential information 
related to ecological, hydrological, biophysical, and micro-meteorological 
processes (Zarco-Tejada et al., 2014), and has also been used to monitor 
biodiversity and analyze land cover and habitat landscape (Bergen et al., 2009). 
In addition, vegetation height serves as an input for several models for estimating 
biomass (Sierra et al., 2007; Rutishauser et al., 2013), which facilitates estimation 
of carbon stocks in forest ecosystems and improves our understanding of the 
global carbon cycle. Simultaneously, the amount of carbon stored by vegetation 
is a key parameter of biomass burning models for quantifying greenhouse gas 
emissions (Anaya, 2015). In the tropics, biomass burning is the main cause of 
greenhouse gas emissions (van der Werf et al., 2017).

Tree height is the most common remotely sensed three-dimensional (3D) 
estimate, generally captured in the form of a canopy height model (CHM). 
Several platforms and techniques are available to derive these models. An 
example at a global scale is the GEDI program (https://gedi.umd.edu/) using 
a laser altimeter. Tree height can also be obtained at a local scale by applying 
stereo-pair and multiple-stereo photogrammetry to a series of images acquired 
from aircraft and from airborne Light Detection And Ranging (LiDAR) 
(Dandois and Ellis, 2013). The small footprint, along- and across-track density 
and laser pulses emitted by a LiDAR system means that it can penetrate the 
canopy and reach the forest floor. This allows recording of multiple returns 
and enables derivation of vertical forest profiles (Lisein et al., 2013), as well 
as generation of three-dimensional, georeferenced point clouds. Models of 
understory terrain elevations (Digital Terrain Models: DTM) and top-of-canopy 
surface heights (Digital Surface Models: DSM) can be generated by filtering 
the above-mentioned point cloud (Dandois and Ellis, 2013). In addition, surface 
heights can be derived by the subtraction of the DSM from the DTM, resulting 
in normalized aboveground object heights (i.e., tree heights, CHM) (White 
et al., 2013). Tree height can also be derived from active synthetic aperture 
radar (SAR) sensors using interferometric and polarimetric observations where 
data from different sensors have been used, for instance: digital surface model 
from Shuttle Radar Topography Mission (Kellndorfer et al., 2004), L-band 
backscatter from ALOS-PALSAR (Joshi et al., 2015), PolInSAR coherence 
models using Radarsat-2 (Kumar et al., 2017), Interferometric coherence 
from TanDEM-X (Bispo et al., 2019), Random Volume over Ground models 
using TanDEM-X data (Kugler et al., 2014; Lee and Fatoyimbo, 2015), and 
UAVSAR data (Lavalle and Hensley, 2015).

An emerging alternative is aerial remote sensing, which enables 
regular aerial 3D measurements of canopy structure and spectral attributes 
at a considerably lower cost, with properties like those of LiDAR, but with 

red-green-blue (RGB) spectral attributes for each point (Dandois and Ellis, 
2013). Unmanned aircraft systems (UAS’s), also known as ‘drones’ are 
emerging as viable alternatives and are available in numerous forms offering 
flexible platforms. In many cases, UAS’s have the potential to supplement and 
complement remote-sensing measurements acquired from satellites or manned 
aircraft systems (Whitehead and Hugenholtz, 2014). Furthermore, UAS 
imagery can provide, a rapid and low-cost alternative to multi-temporal RS data 
acquisitions for meaningful estimates of forest canopy attributes (Chianucci et 
al., 2016), especially in developing countries where Airborne Laser Scanning 
(ALS) acquisitions are less frequent (Giannetti et al., 2018).

UAS imagery can be acquired with user-grade cameras and low-cost 
global navigation satellite systems (GNSS), while 3D geometry is generated a 
posteriori with software that combines structure-from-motion (SfM) algorithms 
and photogrammetric principles (Puliti et al., 2015). This technique depends 
on the high image overlap and information redundancy from UAS imagery. 
The results meet the standards for forest inventories with very high spatial and 
temporal resolution (Lisein et al., 2013; Giannetti et al., 2018).

Remote-sensing approaches such as optical systems (i.e., UAS’s) that use 
high-density point-cloud such as LiDAR sensors, also enable the detection of 
forest structural attributes (i.e. dominant tree height and crown diameter), while 
providing low-cost alternatives to field-based assessment. This may be done by 
using a technique known as segmentation, which was designed for identifying 
the edges of a finite set of non-overlapping objects that subdivide an image 
into tessellated regions, in this case, tree crowns. During this process, adjacent 
objects can be merged or divided based on specified criteria of homogeneity. 
Tree crown dimensions are a fundamental structural parameter of forests, which 
can be used to model different tree structural variables such as stem diameter, 
height, and biomass. This is useful in forest inventory, regeneration assessment 
(Pouliot et al., 2002; Barnes et al., 2017) and forest degradation.

Several approaches have been proposed for tree crown delineation from 
aerial imagery, such as watershed transformation (Ene et al., 2012; Panagiotidis 
et al., 2016; Barnes et al., 2017), region growing (Solberg et al., 2006; Novotny 
et al., 2011), valley following (Gougeon, 1995; Leckie et al., 2003), mean-
shift segmentation (Huang and Zhang, 2008; He et al., 2016), energy balance 
(Gleason and Jungho, 2012), and hill climbing (Ke and Quackenbush, 2011).

The goal of this study was to evaluate the strengths and shortcomings in 
determining structural tree parameters (CH and crown dimensions) in a cloudy 
tropical environment using photogrammetric methods applied to UAS imagery. 
The field plot is a fragment of tropical forest located in a matrix dominated by 
industrial crops and pastures with varied topographical relief.

We aim to evaluate SfM technology in a tropical environment within 
a forest fragment with high cloud content, where trees can reach more than 
40 meters with closed canopy, but at the same time, where degradation and 
fragmentation allows for ground detection. Under these circumstances, we 
expect SfM to have higher accuracy when estimating the ground class.

2. Materials and Methods

2.1. Study Site

The study site is a forest fragment of 60 ha that faces enormous pressure 
in terms of land use change. It is located in the floodplain of the León River (7° 
54’ N; 76° 36’ W) with an elevation varying from 17 m to 60 m above sea level. 
Rainfall exceeds 2500 mm/year, and the average temperature is above 25 °C 
(Figure 1). The forest fragment is located in the northwestern part of South 
America, known as the bio-geographic Chocó, in the municipality of Urabá, 
Colombia. The Northwest area of   South America is a region with unique 
characteristics that make it one of the most biodiverse regions in the world 
(Galeano et al., 1998; Gentry, 1986; Myers et al., 2000). This region includes 
the western slope of the Andes Mountain range from Ecuador, Colombia 
and includes some regions in southern Panama. The region encompasses an 
important altitudinal gradient from sea level to the high peaks of the Andes 
Mountain above 4000 meters above sea level. This condition represents an 
important variety of eco-regions, which includes páramos in the upper part 
of the Andes, montane forests of the Andes in the intermediate regions of the 
western slope, humid forests and flooded humid grasslands in the lower part, 
mangroves in the coastal zones and dry forests towards the southwestern zone 
of Ecuador (Olson et al., 2001). This area represents one of the most diverse 

https://gedi.umd.edu/
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cultural mosaics in South America and the Caribbean, with origins dating 
back to pre-Hispanic times when it was inhabited by more than thirty different 
human groups. Presently, different indigenous communities, numerous Afro-
descendant communities and mestizo communities descended from immigrants 
from various regions inhabit the region (WWF Colombia, 2008). These 
communities depend directly on the ecosystem’s goods and services (MADS 
and PNUD, 2014).

Despite its biological and cultural importance, the region faces great 
threats associated with the transformation of natural landscapes, which have 
been intensified mainly by the replacement of forest ecosystems by pastures 
for livestock, industrial banana and oil palm plantations and other uses (Fagua 
and Ramsey, 2019). Industrial plantations and livestock are normally related 
to the construction of channels that drain excess surface water, thus altering 
the region’s hydrology (Anaya-Acevedo et al., 2017). The expansion of the 
agricultural frontier, livestock, illicit crops, and illegal mining in the region has 
resulted in a significant degradation of ecosystems in recent years (Anaya et al., 
2020; Fagua and Ramsey, 2019), with estimations of deforestation rates close 
to 135 km2/year (Fagua and Ramsey, 2019; Hansen et al., 2013). Additionally, 
illegal gold and gravel mining activities in numerous water currents alter natural 
water flows and their quality, putting the stability of ecosystems and the services 
they provide at risk (Meyer et al., 2019; Patino and Estupinan-Suarez, 2016; 
UNODC, 2017). The difficulty accessing the region, which is mainly due to 
scarce infrastructure, characteristics of the terrain, rapidly changing threats to 
natural ecosystems and regional social conditions, represents a challenge for 
forest monitoring, and implies an urgent need to develop monitoring strategies.

2.2. Unmanned Aircraft Systems (UAS) datasets

A flight was designed using Pix4D capture over the forest fragment 
(PIX4D, Lausanne, Switzerland). The field campaign was carried out at the 
end of the dry season over a period of two days, April 28th and 29th of 2018. 
This time was required to set up all the equipment including a sub metric GNSS 
base station, GNSS rover, and two UAS platforms. Two image datasets were 
acquired in the study area using these platforms. The primary UAS imagery 
was acquired by using a DJI Phantom 4 PRO (DJI, Shenzhen, China), a single, 
multi-rotor quadcopter Unmanned Aircraft Vehicle (UAV) equipped with a 
20-megapixel RGB camera (1” CMOS sensor). This UAV was also equipped 
with an inertial measurement unit and consumer-grade GNSS. These sensors 
determine the position and altitude of the aircraft during flight. The main 
objective of this survey was to generate the CHM with an effective ground 
separation distance less than 0.05 m.

Figure 1. The study area’s forest fragment is located in the northwestern part 
of South America, known as the bio-geographic Chocó, in the municipality of 

Urabá, Colombia. Source: Basemap from Esri, HERE, Garmin, © OpenStreetMap 
contributors, and the GIS user community.

For comparison, a second UAS image dataset was acquired by using 
a DJI INSPIRE 2 drone equipped with a Parrot SEQUOIA multispectral 
RGB camera with a RGB sensor and individual red, green, red-edge, and 
near-infrared sensors (Parrot, Paris, France). This camera had an inertial 
measurement unit and magnetometer, with built-in GNSS to determine the 
location and orientation of each UAS image. This device was used to perform 
an aerial survey with the spatial extent encompassing a smaller region to the 
southeast part of the study site.

The UAS flights have a flying altitude of 93.1 m which fulfill the 
aeronautic regulation of the country. The ground resolution considers a GSD 
of 2.18 cm/pix (RGB camera) and 8.17 cm/pix (Multispectral RGB camera).

2.3. Data processing

2.3.1. Generation of the orthomosaic and the Canopy Height Model

To extract 3D models from multiple UAS overlapping photographs, we 
used a SfM photogrammetric technique, which involved using image-matching 
methods to process a set of non-oriented images acquired from multiple 
views to extract the 3D point cloud and generate the 3D model. According to 
Chiabrando et al., (2015), three steps compose the SfM process.

In the first step, multiple views of an object captured from a range of 
different positions are aligned by automated identification of matching features 
within all images. This process is iteratively refined by using nonlinear least-
squares minimization (Chiabrando et al., 2015), enabling initial estimates of 
camera positions and object coordinates. The detection and extraction of the tie 
points (features that can be clearly identified in two or more images and that can 
be selected as a reference point to improve relative accuracy of photogrammetry 
projects) are based on geometrical similarities, such as object edges, and can be 
performed using algorithms such as scale-invariant feature transform (SIFT) 
(Lowe, 2004), and speed-up robust feature (Bay et al., 2006). Currently, the 
main software for the initial stage of the digital photogrammetric workflow is 
based on SIFT, or on the modified version of SIFT.

The position of feature points is monitored throughout the sequence of 
images, and a local descriptor is assigned to each point according to its local 
neighborhood. This is useful for detecting point correspondences between 
all images in the set. Thus, after this phase, the camera interior and exterior 
parameters and its positions and assets are defined in a local reference system, 
which aims to create a sparse 3D point cloud of features corresponding to the 
locations of the estimated feature points.

In a second step, a dense multi-view stereo reconstruction of the aligned 
images generates a dense 3D representation of the object’s surface geometry. 
In this phase, the dense reconstruction algorithm considers how the individual 
depth maps are merged into the final digital model and generates detailed 3D 
meshed models from the pixel values.

The final step involves the numerical representation of the morphology and 
surface objects, which is equivalent to a DSM. This is essential for generating true 
orthophotos because they are vital for texturing the computed mesh.

All images were first treated as different image blocks for computing 
image orientation by aero triangulation, after that, they were merged into a 
unique image block. The workflow is summarized in Figure 2.

A dense surface reconstruction known as a mesh was generated by using 
a dense matching algorithm (Pineux et al., 2017). Taking into account that 
the generated 3D point clouds contain RGB color information extracted from 
the input images, they were used to generate final surface products (Kaiser et 
al., 2014) and the model texture (Nikolakopoulos et al., 2017). In this sense, 
an interpolation process following the Agisoft Photoscan Pro version 1.3.1 
(Agisoft LLC, St. Petersburg, Russia) workflow generated a DSM surface.

The absolute heights in the DSM were normalized to obtain relative 
heights by subtracting the terrain height from the DTM generated from the 
height of each point of the dense point cloud in the ‘ground’ category. The 
DTM was built by visually identifying ground points inside and outside the 
forest fragment and the points were interpolated using an Inverse Distance 
Weighted algorithm. The CHM is calculated as the difference between DSM 
and DTM heights, which represent the tree heights; that is, the distance between 
the ground and the treetops.
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Figure 2. Schematic diagram describing the photogrammetric process for Digital 
Surface Model, Digital Terrain Model and Orthomosaic generation.

Finally, authors exported the model to a grid-based format and generated 
an orthomosaic after a quality check of the individual images, which were 
merged and projected onto a local coordinate system (i.e., the Magna-Colombia 
projection system). For this projecting purpose, the markers (reference points) 
projections were used.

Table 1 shows all parameter values used in the Agisoft Photoscan Pro 
workflow and that were applied to all image blocks of the primary UAS 
image dataset acquired by using a DJI Phantom 4 PRO (RGB camera). Table 
2 summarizes the statistics describing the alignment of the image block from 
the survey.

Table 1. Settings of Agisoft Photoscan Pro workflow parameters.

Process Reconstruction parameter: Value
Align photos Accuracy: High

Image pair selection: Generic
Key point limit: 40000
Tie point limit: 1000

Constrain features by mask: No
Adaptive camera model fitting: Yes

Optimize alignment Self-calibration of the camera: Yes
Camera accuracy (m): 10
Camera accuracy (deg): 2

Marker accuracy (m): 0.005
Projection accuracy (pix): 0.1

Tie point accuracy (pix): 4
Fit all except for k4 & rolling shutter

Build dense cloud Quality: High
Depth filtering: Mild

Build mesh Surface type: Height field
Source data: Dense point cloud
Face count: High (57.513.694)

Interpolation: Enabled
Point classes: All

Build DEM Source data: Dense point cloud
Interpolation: Enabled

Build Orthomosaic Blending mode: Mosaic
Surface: DEM

Enable color correction: No
Enable hole filling: Yes

Table 2. Statistics of Agisoft Photoscan Pro process.

Parameter Value

Number of images 2671
Aligned images 2135

Flying altitude (m) 93.1
Ground resolution (cm/pix) 2.18

Tie-points for the point cloud 1.558.358
Markers projections 4.218.287

Reprojection error (pix) 0.841
Coverage area (km2) 1.13

2.3.2.Tree-crown delineation or segmentation.

For image segmentation, we used the object-oriented classification 
method based on the mean-shift algorithm provided in the open-source software 
Orfeo Toolbox/Monteverdi (OTB, 2018). OTB is used worldwide because 
it extracts spatial features, segments, and classifies high-resolution imagery 
(Huang and Zhang, 2008). This software is efficient, and free for research, 
teaching, and even commercial use (Zou and Lin, 2013).

Mean-shift segmentation is an approach for tree crown delineation from 
imagery using object-based image analysis (OBIA), which tends to provide 
better results than the traditional pixel-based approach when VHR data is used 
(Komárek et al., 2018).

This type of analysis begins with an image segmentation into closed 
objects taking into consideration certain criteria of homogeneity regarding shape, 
texture and context information associated with the objects (Marpu et al., 2010). 
The resulting objects can be classified until the object shapes (i.e., tree crown 
boundaries) are fully delineated. In this research, the OBIA technique was used 
to delineate tree crowns using the UAS imagery datasets because of its ability to 
successfully delineate tree crowns using VHR imagery (Singh et al., 2015).

The mean-shift algorithm, with its nonparametric nature, is an efficient 
spatial-feature-extraction method for delineating arbitrarily shaped clusters. It 
exploits contextual homogeneity and reduces spectral variation in local areas 
and, at the same time, preserves edge and detail information. Thus, it identifies 
geographical features by using scale and homogeneity parameters obtained from 
reflectance in RGB and from elevation (Huang and Zhang, 2008). In addition, 
mean-shift segmentation also helps to open the original image into a multi-scale 
space to allow scale to be incorporated into classification (Zou and Lin, 2013).

In this study, OTB is used for mean-shift segmentation of 20 ha, which 
is approximately 33% of the study area. The input-parameter settings for 
the segmentation are (in pixels): spatial radius of 20, minimum object of 12, 
and minimum region size of 100. Both 5-cm-pixel CHM model and RGB 
orthorectified images were used to improve the quality of the tree-crown 
delineation by using the spectral information from the RGB bands and the tree-
crown edge information from the CHM. Figure 3 shows the method used for 
segmentation using the secondary UAS image dataset acquired by using a DJI 
INSPIRE 2 drone (Multispectral RGB camera).

Figure 3. Schematic diagram describing method of tree segmentation process.
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2.4. Validation process

2.4.1. Model comparison

As mentioned previously, a second UAS flight was executed for comparison 
in the southeast zone of the study area, which covered 20 ha over the study site 
(see Figure 1 for UAS flight coverages). This aerial survey used a different 
sensor for the optical camera. Specifically, a multispectral camera equipped with 
individual red, green, red-edge, and near-infrared sensors, and the 3D point cloud 
from this device was processed by using a Pix4D mapper Pro.

A subset of the original DSM was obtained with the same extension as 
the multispectral camera survey, with the aim being to compare quality and 
correlation between both models.

2.4.2. Segmentation accuracy assessment

Some object metrics have been proposed to evaluate a segmentation 
considering the data quality as well as the optimal customization of parameter 
settings, which enable the adaptation of segmentation results on target objects 
as manually delineated trees. The inaccuracies (anomalies) of segmentation 
refer to over-segmentation and under-segmentation; it means ‘too many’ or ‘too 
few’ segments respectively (Möller et al., 2007).

As recommended by Montaghi et al., (2013), we applied a threshold 
method before calculating the metrics to reduce false delineation caused by small 
overlapped regions between the reference and segmented trees. An intergap 
zone was defined by selecting cells in the CHM shorter than 2 m. In addition, 
referenced and segmented trees with areas less than 3 m2 were removed from the 
analysis. An exhaustive reference polygon dataset was used, where 857 reference 
objects were manually digitized from UAS images, and then superimposed on the 
automatically estimated tree crowns to assess accuracy.

This work used vector-based measures to compare the results of object-
based image segmentation with a set of manually delineated objects extracted 
from the UAS image (orthophoto mosaic), as adopted by Gougeon and Leckie 
(2003). For this purpose, we used the most common indices used in the literature: 
quality rate (QR), over-segmentation rate (OR), under-segmentation rate (UR), 
and Euclidean distance (ED1) (Weidner, 2008; Clinton et al., 2010; Liu et al., 
2012). However, because these indices focus only on geometric relationships, 
they may not be sufficient to describe the diverse types of discrepancies. 
Therefore, we used arithmetic relationship indices, as a complement to the 
aforementioned geometric indices. The arithmetic indices used in this validation 
were proposed and defined by Liu et al., (2012): potential segmentation error 
(PSE), number of segments ratio (NSR), and Euclidean distance 2 (ED2).

The indices based on geometric relationships are calculated as follows 
(Weidner, 2008; Clinton et al., 2010; Liu et al., 2012):

= 1 − ∑| ∩ |
∑| ∪ |, (1) 

= 1 − ∑| ∩ |
∑| | , (2) 

= 1 − ∑| ∩ |
∑| | , (3) 

1 = √
2+ 2

2
, (4) 

where ri is a reference polygon in a reference dataset R, i = 1, 2, …; and 
sk are the corresponding segments in a corresponding segmented-object dataset 
S, with k = 1, 2, ….

The indices based on arithmetic relationships are calculated as follows 
(Liu et al., 2012):

= ∑| − |
∑| | , (5) 

= ( − ), (6) 

2 = √ 2 + 2, (7) 

where sk and ri are defined as above, m is the number of reference 
polygons, and v is the number of corresponding segments.
2.4.3. CHM accuracy assessment

The heights of 59 individual trees (objects) identified in the orthophotos 
were measured using a Leica DISTOTM E7500i Laser Distance, which has 
14 measurement modes and a 360° tilt sensor with an accuracy to 0.16 cm. 
The sample (n = 59) was defined in order to have as many measured trees as 
hectares of the plot, measurements were distributed systematically considering 
topographic and vegetation differences (see Figure 4). Orthophotos with a 10 
m grid of a WGS-84 UTM18 North projection were used in the field to identify 
the 59 trees with the help of a compass and the GPS. We found a straight line 
of view from the forest floor to the treetop for each tree and made several 
measurements to determine the maximum value vri (Equation 9). Accordingly, 
the crown delineation was made by visual interpretation and the maximum 
value was selected for each crown in the CHM vmi (Equation 9). The vertical 
accuracy was calculated as the mean vertical error µv of the sample errors evi, 
which was estimated as the vertical root-mean-square error (RMSEv):

= √∑ ( )2
, (8) 

with:

evi = vri – vmi, (9) 

where vri is the reference height of tree i measured in the field, vmi is the 
maximum CHM height at the crown level derived from optical images, n is the 
number of sampled trees, and the standard deviation Sv of the vertical error is 
estimated by:

= √∑ ( − )2

( −1) , (10) 

The standard error in the estimates of RMSEv is estimated by:

= /√ , (11) 

Finally, the estimated error interval at a 95% probability level is:  
RMSEv ± 1.96 SRMSE

Figure 4. Distribution of tree height (reference data) used to measure the accuracy 
of CHM. In color polygons UAS flights coverage is shown: Red polygon (Phantom 

4 PRO - RGB camera), blue polygon (Inspire 2 - Multispectral camera).

Three classes were used to determine the bias per class: 10 - 20 m, 20 - 30 
m, and 30 - 40 m and the mean value of evi was calculated for each class. This 
bias is a measure of the difference between the expected value of the reference 
height of tree i with respect to the model vmi.
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Figure 7. Comparison of DSMs and distribution of sample points. (Left) RGB camera onboard the DJI Phantom 4 PRO. (Right) Parrot SEQUOIA Multispectral RGB 
camera on board the DJI INSPIRE 2 UAV.

Figure 6. Very-high-resolution (VHR) image and models obtained from unmanned aircraft systems data: a) Digital surface model, b) Digital terrain model, c) Canopy 
height model, and d) Orthomosaic.
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3. Results

3.1. Model generation

A total of 2671 images were acquired with the optical RGB camera, 
covering 60 ha of the forest fragment (Figure 4). Only 2135 images were 
correctly aligned, obtaining a ground resolution of 2.18 cm/pixel. A total of 
1’558 358 tie point positions were adjusted, with a mean residual of 0.841 
pixels (reprojection error). We acquired 1632 with the multispectral RGB 
camera, considering the four sensors covering an area of 20 ha in the southeast 
zone of the study area. A total of 1460 photographs were correctly calibrated, 
which yielded a ground resolution of 8.16 cm/pixel. A total of 1´ 657 685 tie 
point positions were adjusted, with a mean residual of 0.276 pixels (reprojection 
error). Having two consecutive flights allowed us to determine whether the 
SfM method produces consistent results, and we found a correlation of R2 
of 0.99 between both DSMs. The extent of NoData was determined in those 
areas where photographs did not match or photographs did not sufficiently 
overlap, and the required tie points could not be obtained to densify the point 
cloud. NoData was propagated from the DSM to the DTM and CHM. The 
DSM was not estimated over a total of 2% of the area.

All classes of the dense 3D point cloud were used to reconstruct a 
dense surface via a dense matching algorithm. The resulting DSM has a range 
between 17.12 and 96.96 m, a mean of 47.50 m, and a standard deviation (SD) 
of 13.16 m. In the case of the DTM, a similar dense surface was reconstructed, 
but only by considering the height of those pixels in the ground category in the 
DSM. The resulting DTM ranges from 17.12 to 58.71 m, with a mean of 35.78 
m and a SD of 7.19 m above the ground.

The tree heights corresponded to the difference between the DSM and 
DTM, which is known as the CHM. This model ranged from 0 to 57.76 m, 
and had a mean of 11.72 m and a SD of 9.71 m above ground. The pixel 
frequencies and values are given in Figure 5.

Considering the RGB color information extracted from the input images 
and the dense 3D point cloud, we generated an orthomosaic of the study area, 
which has a ground spatial resolution of 0.50 m. The respective DSM, DTM, 
and CHM were also exported with a 0.50 m pixel size (Figure 6).

Figure 5. Distribution of pixel height based on surface models generated using 
RGB camera data.

3.2. Vertical accuracy of canopy height model (CHM)

The GPS and the orthophoto maps allowed us to identify each of the 59 
trees in the field (Table 3). The average tree height measured in the field with 
the DISTOTM E7500i Laser was 24.5 m with a maximum of 37.3 m. The 
estimated RMSE of the vertical errors (Equation 8) was 3.6 m with a 95% 
confidence interval of 0.53 m. meaning that there is a 95% proven reliability 
that the unknown population average error is between 3.05 and 4.12 m.

For comparison purposes, both UAS datasets were analyzed (Figure 7). 
Using a random sampling of 283 points, we found a correlation coefficient of 
0.99 between both generated DSMs. The results of the aforementioned flight 
height for both UAS datasets were considered in this analysis.

Table 3. Differences in tree height evi between field measurements (reference data) 
at individual tree scale (vri) and estimated by the CHM (vmi) as the maximum 

height for each crown.

ID vri vmi evi ID vri vmi evi

001 31.2 28.6 2.6 030 34.7 32.5 2.2

002 27.1 25.6 1.5 031 27.9 25.3 2.6

003 24.3 27.1 −2.8 032 3.8 5.1 −1.3

004 23.6 25.8 −2.2 033 26.2 31.1 −4.9

005 21.0 19.9 1.1 034 17.2 15.9 1.3

006 24.2 31.1 −6.9 035 30.6 24.9 5.7

007 6.2 3.6 2.6 036 26.0 25.6 0.4

008 23.3 26.5 −3.2 037 31.2 32.2 −1.0

009 23.6 26.9 −3.3 038 30.5 28.0 2.5

010 24.9 26.0 −1.1 039 21.0 22.1 −1.1

011 28.3 22.8 5.5 040 25.4 24.9 0.5

012 24.9 20.3 4.6 041 23.0 27.6 −4.6

013 19.0 17.5 1.5 042 22.9 17.8 5.1

014 23.7 20.5 3.2 043 19.7 22.9 −3.2

015 28.4 24.5 3.9 044 16.3 17.2 −0.9

016 23.0 24.5 −1.5 045 20.3 13.4 6.9

017 28.0 23.2 4.8 046 32.1 30.3 1.8

018 19.8 27.1 −7.3 047 33.4 34.8 -1.4

019 10.7 10.0 0.7 048 30.0 25.2 4.8

020 27.6 24.9 2.7 049 27.4 26.4 1.0

021 36.5 28.8 7.7 050 27.6 22.1 5.5

022 34.5 26.7 7.8 051 19.9 22.5 −2.6

023 28.3 22.0 6.3 052 31.6 28.9 2.7

024 22.9 22.2 0.7 053 23.7 22.9 0.8

025 19.6 16.7 2.9 054 22.1 20.2 1.9

026 24.6 20.0 4.6 055 15.2 18.7 −3.5

027 26.0 27.7 −1.7 056 13.1 10.4 2.7

028 35.7 31.9 3.8 057 10.5 10.2 0.3

029 37.3 33.5 3.8 058 29.4 31.1 −1.7

059 25.0 24.5 0.5

3.3. Accuracy of delineation of tree crowns

Figure 8 shows the 857 reference objects manually digitized from UAS 
images, and the result of delineating individual tree crowns by using the 
mean-shift algorithm provided in the open-source software Orfeo Toolbox/
Monteverdi (OTB, 2018), over the multispectral RGB image (Sequoia camera). 
From the geometric and arithmetic indices used for validation (Figure 3) we 
found: Over-segmentation error was 7.1% for the overall validation area, the 
under-segmentation error was 36.2%, and the total accuracy for delineating 
tree crowns was 73.9% (i.e., ED1 = 26.1%). The comprehensive index of 
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quality rate (QR) was 39.2%. For the arithmetic indices, PSE had an error of 
45.7%, whereas NSR had 20.0%, and the delineation of tree crowns was 50.1% 
accurate overall (i.e., ED2 = 49.9%). For the accuracy measurements of 1:1 
correspondence, 30% of the total reference crowns matched correctly with 
respect to the segmented trees, and 29% of the reference objects were omitted.

4. Discussion

4.1. Canopy height model accuracy

The accuracy of our estimated CHM incorporates the uncertainty of the 
DSM and DTM. DSM errors are associated with GPS accuracy (geometric 
dilution of precision) and the quality of individual photographs while the DTM 
depends on the visual interpretation of the photogrammetric point cloud and the 
interpolation of the points. The latter is highly dependent on the characteristics 
of the canopy, which is very closed in tropical forests. Ota et al., (2017) found 
a RMSE of maximum height of 1.24 m for temperate conifer forests in Japan 
which has higher accuracy than our results.

When evaluating the accuracy of the CHM against tree height measured 
in the field, the correlation was R2 = 0.75, this value is within the range of (R2 
0.63 - 0.84) found by Dandois et al., (2013) in a temperate deciduous forest. 
This is because the CHM model is a function of DTM accuracy, which depends 
on the penetration of sunlight through canopy gaps, and this is highly limited 
in these tropical forests. Therefore, the quality of the absolute height estimation 
depends strongly on the complexity of the terrain and the canopy closure. 
Concern also surrounds the determination of the tree height measurements in 
the field (i.e., the treetop). Despite the 0.16 cm accuracy of the DISTO laser, 
several measurements are required to select the maximum height for each tree 
crown. The observation must be made below the maximum tree height because 
a straight line of sight is required between the DISTO laser and the given 
treetop. The difficulty of finding such a straight line of sight varies between tree 
species and is affected by the presence or absence of leaves, which is associated 
with the phenological cycles.

4.2. Quality assessment of tree crown delineation

Although in the bio-geographic Chocó there has already been regional 
assessment of forest structure and aboveground biomass using measurements 
from a combination of ground tree inventories and airborne (LiDAR) (Meyer 
et al., 2019), this study is the first approach for delineating tree crowns in this 
natural tropical forest fragment using VHR imagery from UAS’s.

Regarding the tree-crown delineation validation, because the QR index is 
far from zero, then a low geometric match is obtained due to a clear discrepancy 
of the canopy segmentation with the reference polygons. However, QR alone 
does not adequately assess image segmentation quality, because none of the 
existing indices can directly identify the optimal combination of parameters 
for the segmentation process. In general, input parameters that influence the 
size of the segmented-image objects are mostly selected intuitively by trial and 
error (Möller et al., 2007; Marpu et al., 2010), although additional metrics have 
been proposed to improve this quality assessment measuring both topological 
and geometric similarity between segmented objects and reference objects, 
for instance SimSize and Area Fit Index - AFI (Montaghi et al., 2013). Other 
studies have used metrics to assess correct segmentation, over-segmentation, 
and under-segmentation, assuming that correct, over-, and under-segmentation 
correspond to the cases true positive, false positive, and false negative results, 
respectively (Miraki, 2021), but this approach was not considered in this paper.

Few studies have attempted to estimate the tree crowns of tropical forests 
of high biodiversity, which primarily consist of broad-leaved trees with a great 
variety of species and ages (Matsumoto et al., 2017). A study in a tropical context 
was developed by Wagner et al., (2018) in the Brazilian Atlantic rain forest with 
highly heterogeneous tropical canopy cover, comprising both deciduous and 
evergreen species in the municipality of Campinas (São Paulo State - Brazil). 
They used VHR satellite images for tree detection and segmentation, obtaining 
results of several tree crowns correctly detected of 79.2%, which although not 
validated with the same metrics, led to a result of an overall accuracy of 85.3%. 
This is not very different from those obtained in this research (73.9%). Qiu et 
al., (2020) proposed a new tree crown delineation method using both brightness 
and spectra from high resolution multispectral images in a plot with high 
biodiversity and dense crowns with different shapes, structures, and distinctive 
colors in the Amazon rainforest, achieving a delineation accuracy of up to 76%.

The UAS-derived CHMs for individual tree crown delineation normally 
perform well in coniferous forests, but their capabilities in broadleaf or mixed 
forests are still challenging (Miraki et al., 2021). In fact, for the accuracy 
measurements of 1:1 correspondence, the reference crowns matched correctly 
and the ED2 result indicates a low performance in the vegetation of the 
analyzed tropical mixed forest ecosystem, but the manually delineated objects 
(trees) still influence the results (Clinton et al., 2010) in terms of comparing 
the shape geometry and the distance between object boundaries (Montaghi et 
al., 2013). Visual interpretation has limitations with respect to clearly detecting 
small trees. In addition, delineating irregular-shaped tree crowns manually is 
difficult for large-scale imagery because of the influence of background (Ke 
and Quackenbush, 2011).

Figure 8. Result of individual-tree-crown delineation. (Left) Reference and segmented trees obtained using mean-shift segmentation. (Right) Matched trees area between 
digitized trees and segmented trees.
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In tropical forests, traditional UAV photogrammetry demonstrates its 
effectiveness (Giannetti et al., 2018), and several segmentation techniques have 
been proposed, but they are not specifically conceived for the segmentation 
of the tropical forest. Such techniques normally perform well in coniferous 
forests with obvious between-crown shadows, but fail in dense deciduous or 
mixed forests, where tree crowns are close to each other and between-crown 
shadows and boundaries are unobvious, whereas adjacent tree crowns may be 
of distinguishable spectra (Qiu et al., 2020).

Furthermore, the level of detail available in VHR images could 
potentially have a strong negative effect at various stages of the processing (Zou 
and Lin, 2013). VHR images may provide very high detail, but can cause large 
variations, and thus crown edges can be less detectable. This is especially the 
case where small trees, with relatively small crowns, are dominant (Ke and 
Quackenbush, 2011).

In addition, note that irregular-shaped crowns create differing reflectance 
patterns, which are difficult to recognize. In our case, the tropical forest has 
trees of varying age, species, height, crown size, and crown shape, which causes 
significant variation in brightness in the VHR images acquired with the UAS. 
These result in commission errors, where multiple tree peaks are erroneously 
identified within the same crown. We thus applied image smoothing in an 
attempt to reduce the noise caused by small branches and their corresponding 
shadows within a given crown. Nevertheless, some non-forest areas, such as 
soil, were falsely identified as tree crowns in the segmentation process.

Our results indicated a degree of sensor-specific independence. For 
example, there are subtle variations in reconstructed crown geometry (i.e., 
shape, height) and the perceived shape of low-lying vegetation and the terrain 
beneath. Despite this, and divergent altimetric accuracies, the comparison 
between both CHM models showed a 99% correlation. Evidently, both sensor 
type - and the processing software and workflows employed - will impact the 
output 3D models. However, results are sufficiently similar and of suitable 
accuracy to facilitate tree segmentation at our desired accuracy.

According to the results and the characteristics of sensor type, we suggest 
for future studies to derive different indices from the available spectral bands 
and enhance the input data for segmentation.

4.3. Photogrammetry software package used

Regarding the consequences of the use of the processing software, it is 
worth considering the potential of each software used. Initially, it is necessary 
to highlight the issue of orthomosaic and VHR imagery generation, since 
Pix4D mapper performs an orthorectified mosaic (from the average mapping of 
pixels, it means, averages the color of each pixel according to the colors of each 
photo with overlap in that area) based on the generated DSM, while Agisoft 
Photoscan allows choosing the type of surface on which the orthorectification 
of the images will be performed. This can be a significant time saver in certain 
situations. On the other hand, with respect to the treatment of multispectral 
information, Pix4D mapper provide more tools for the analysis of vegetation 
and forest areas, when using cameras such as the Parrot Sequoia. With respect 
to the DSM, we found a 99% correlation between both models generated by 
Agisoft Photoscan and Pix4D, hence, there are no appreciable differences or 
important consequences to discuss.

4.4. Potential of photogrammetry canopy height models

Studies have shown that both digital photogrammetry or LiDAR 
using space-borne or airborne imagery (acquired with manned airplanes) 
are appropriate for determining forest canopy heights (Kadmon and Harari-
Kremer, 1999; Lisein et al., 2013). Tree height accuracy using LiDAR is close 
to 1 m (Mielcarek et al., 2018) which is better than the 4 m found with our 
methods. In addition, bias of the three height classes is not constant, with our 
reference database, there is a bias to underestimate the class from 10-20 and 
a bias to overestimate in the classes 20-30 and above 30 m. A constant bias 
would be ideal to improve estimates. We expect tree height estimates close to 
60 m to have more uncertainty. Compared with LiDAR, the main limitation of 
digital photogrammetry is that it cannot acquire structural information under 
canopy and produce a complementary DTM, the bias of the CHM is related 
to the quality of the DTM (Swinfield et al., 2019). One reason is the high costs 
of LiDAR technology, which may be too costly for smaller-scale research 

projects. The cost of conventional airborne LiDAR acquisitions remains high 
for researchers and other end-users, especially if high-spatial resolution is 
required over small areas or at high temporal frequencies. The latter represents a 
significant barrier for studies requiring frequent observations at numerous small 
sites or sampling plots (Dandois and Ellis, 2013). In addition, LiDAR by itself 
does not constitute an immediate solution to obtain certain attributes without 
imagery, such as species composition and phenology. Furthermore, there are 
additional data processing bottlenecks associated with the high volumes of data 
gathered in LiDAR campaigns, including filtering, classification, and archiving. 
There are two main advantages of UAV photogrammetric point clouds over 
airborne LiDAR point clouds, first, the lower cost, which is a main limitation 
in developing countries, second, the ability of AUVs to fly below the clouds in 
rain forests.

However, photogrammetry models based on passive sensors have some 
limitations when compared with small-foot-print LiDAR systems. This is 
because the numerous vegetation characteristics (leaf-area index, tree density, 
under-canopy structure, etc.) hinder sunlight from reaching all the forest strata, 
resulting in highly detailed information of the upper canopy but low detail of 
the forest floor due to poor illumination. Having low detail of the forest floor 
generates uncertainty in the DTM generation and thus in the CHM. This 
limitation must be present in the REDD+ program if trying to use allometric 
equations to determine AGB based on height.

The forest fragment analyzed in this study is located in the Biogeographic 
Chocó, which is a region of great ecological relevance due to the forest 
ecosystems present there (Gentry, 1986; Galeano et al., 1998; Myers et al., 
2000). These ecosystems represent great potential for the subsistence of the 
communities that inhabit the area (Camacho and Díaz, 2018; Galeano, 2000), 
however, lack of information represents a limitation for the application of 
sustainable initiatives in the area, such as REDD+ projects. The only study 
related to the estimation of the vegetation height in the region, corresponds 
to the one developed by Meyer et al., (2019), which provides fundamental 
reference information for the analysis of forest ecosystems based on LiDAR 
data and field inventories. In this context, the temporal monitoring of forest 
ecosystems in the region has been limited. In this scenario, detailed analyzes 
at the local scale using VHR imagery derived from UAS´s, such as the one 
developed in the present study, provide a fundamental complement to refine 
the detail of regional analyzes, allowing monitoring on small-scale projects 
(Dandois and Ellis, 2013). These kinds of studies provide not only an efficient 
alternative with regards to time and costs with a great level of detail, but also 
to obtain additional attributes of the forest such as species composition and 
phenology, thus complementing other observations such as satellite ones.

5. Conclusions

VHR imagery allows us to do detailed mapping over areas that are larger 
than traditional field plots. The objects in this study were defined as single trees 
instead of parcel plots, which is an important step in conservation programs, 
where deforestation is not occurring over large extensions but at the level of 
individual trees (i.e., selective logging, where the most valuable single trees 
are extracted). In addition, a UAS-based approach can enhance the modeling 
of carbon stocks at local scales. This would lead to more accurate scaling up 
to regional forest modeling efforts such as those commonly undertaken with 
remote sensing imagery of coarser spatial resolution and could help bridge the 
gap between above-ground biomass (AGB) field measurements and estimates 
from conventional remote sensing data. This is one of the challenges for 
monitoring forest degradation in programs such as REDD+.

UASs allow us to obtain VHR images from viewpoints below clouds, 
while maintaining low equipment and data processing, which is a major 
advantage in tropical countries. Although our interest focuses on crown 
delineation and tree height, other forest features can also be monitored, such as 
phenology, tree species, and health status.

In terms of tree height, the results may differ between forests because 
DTM quality depends on the canopy closure, which affects CHM accuracy. In 
this respect, fieldwork is important to define the height of reference trees and to 
locate canopy gaps and determine their extent. We suggest several campaigns 
to re-measure tree heights in order to improve reference data quality. It may be 
beneficial to analyze CHM correlation among different flight heights using both 
VHR images.
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Optical systems such as UAS offer possibilities to fulfill the needs of 
forest inventories and can allow the detection of forest structural attributes such 
as dominant tree height and crown size. They also offer low-cost alternatives 
with respect to field-based assessment and airborne laser scanning systems or 
VHR satellite imagery (e.g., Worldview, IKONOS, QuickBird) for accurate 
extraction of the required forest information. In fact, due to low operation and 
maintenance cost, it is possible to acquire imagery far more frequently than 
conventional remote sensing technologies. This is very important for improving 
deforestation and degradation monitoring programs, as significant seasonal 
differences in tropical forest cannot be detected with single-date imagery.

The user must evaluate the tradeoff between the cost of a LiDAR sensor 
and the error involved with a UAS with a RGB sensor. With the methods 
detailed herein, we obtained an error between 3 and 4 meters within a 95% 
probability level. Although most previous work uses forest parameters derived 
from UAVs to estimate height or to delineate tree crowns (Lisein et al., 2013; 
Zarco-Tejada et al., 2014; Panagiotidis et al., 2016; Bonnet et al., 2017;), 
we found that assessing both parameters within the same project is useful to 
validate the results.

According to technical advantages identified, presented and discussed, 
the proposed UAS-based forest monitoring approach could be particularly 
attractive and useful to organizations involved in REDD+. This approach could 
prove especially useful in tropical regions, because of their ability to map and 
facilitate forest degradation-and-regrowth monitoring. In terms of monitoring, 
the next step to exploit the full potential of this type of data is to generate new 
models and to execute new UAV flights to evaluate the sensitivity of the models 
to fallen or harvested trees.
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