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ABSTRACT

Soil degradation induced by gully erosion represents a worldwide problem in the many arid and semi-arid countries, 
such as Iran. This study assessed: (1) the importance of variables that control gully erosion using the Boruta algorithm, 
(2) the relationship among causative variables and gullied locations using the evidential belief function model (EBF), 
and (3) gully erosion development using the algorithms of boosted regression tree (BRT) and support vector machine 
(SVM). Based on the results of the Boruta algorithm, slope, land use, lithology, plan curvature, and elevation were 
the most important factors controlling gully erosion. The results of the EBF model showed the predominance of gully 
erosion on rangeland and loess-marl deposition. The predominance of gullied locations on the concave positions, 
with the slope of 5°–20° in the vicinity of drainage lines, illustrates a preferential topographic zone and, therefore, a 
terrain threshold for gullying. The correlation of gullied locations with rangelands and weak soils in concave positions 
demonstrates that the interactions among soil characteristics, topography, and land use stimulate a low topographic 
threshold for gullies development. These relationships are consistent with the threshold concept that a given soil, land 
use, and climate within a given landscape encourage a given drainage area and a critical soil surface slope that are 
necessary for gully incision. Furthermore, the BRF-SVM had the highest efficiency and the lowest root mean square 
error, followed by BRT for predicting gully development, compared with LN-SVM algorithm. The application of two 
machine learning methods for predicting the gully head cut susceptibility in northern Iran showed that the maps 
generated by these algorithms could provide an appropriate strategy for geo-conservation and restoration efforts in 
gullying-prone areas.

Factores que afectan los umbrales topográficos en la ocurrencia de erosión y su manejo a través  
de modelos predictivos de aprendizaje automático

RESUMEN

La degradación del suelo por erosión representa un problema generalizado para aquellos países con suelos áridos y 
semiáridos como Iran. En este estudio se miden los siguientes aspectos: 1. La importancia de las variables que controlan 
la erosión a través del algoritmo de Boruta; 2. La relación entre causales y los lugares erosionados a través del modelo de 
confianza (EBF, del inglés evidential belief function model), y 3. desarrollo de la erosión a través de los algoritmos árbo-
les de regresión potenciado (BRT, Boosted Regression Tree) y máquinas de vectores de soporte (SVM, support vector 
machine). Con base en los resultados del algoritmo de Boruta, la inclinación, el uso del suelo, la litología, la curvatura 
y la elevación son los factores más importantes en el control de la erosión. Los resultados del modelo de confianza 
muestran la predominancia de la erosión en los pastizales y en las deposiciones de marga de loess. La predominancia de 
lugares erosionados en puntos cóncavos, con una pendiente de entre 5 y 20 grados junto a líneas de drenaje, ejemplifica 
una zona topográfica preferencial y, además, un umbral en el terreno para la erosión. La correlación de zonas erosio-
nadas con pastizales y suelos débiles en posiciones cóncavas demuestra que las interacciones entre las características 
del suelo, la topografía, y el estudio del suelo estimulan un umbral bajo para el desarrollo de la erosión. Estas relaciones 
se enmarcan en el concepto de que ante un tipo de suelo dado, el uso que se le brinde y el clima en un paisaje especí-
fico se crea una área de drenaje y una pendiente con superficie de suelo crítico, necesarios para un corte erosionado. 
Además, los algoritmos BRF-SVM tuvieron la mayor eficiencia y el menor error cuadrático medio, seguido por el BRT 
en la predicción del desarrollo de erosión frente al algortimo LN-SVM. La aplicación de dos métodos de aprendizaje 
automático para para predecir la susceptibilidad de corte en el norte de Irán muestra que los mapas generados por estos 
algortimos pueden proveer una estrategia apropiada para la geoconservación y los esfuerzos de restauración en zonas 
propensas a la erosión. 
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Introduction
Detachment and transportation of soil particles by overland flow are the 

most important causes of land degradation in water erosion-prone environments 
(Ollobarren et al., 2016). Different stages of linear erosion development, such as 
rilling and gullying, irreversibly affect the health and resilience of soil systems 
(Su et al., 2010; Chaplot et al., 2005). Gullies are defined as deep channels formed 
by accumulated overland flows that multiple mechanisms, such as cutting, 
penetration, and tension gap progression, encourage their development. These 
erosional landforms commonly develop on hillslope due to the simultaneous 
effects of multiple geo-environmental variables, including land cover, land use, 
lithology, topography, soil type, and climate (Gayen et al., 2019). 

Soil degradation induced by water erosion is the most critical challenge 
faced by many of the world’s dryland regions, such as Iran. Iran is recognized 
as the second in the world in terms of soil erosion where approximately 2.5 
billion tons of fertile lands are lost per year. Gully erosion can stimulate 
multiple environmental hazards, such as desertification, increasing sediment 
load in rivers and reservoirs, flood, and soil productivity loss (Fox et al., 2016; 
Ekholm and Lehtoranta, 2012). Although this hazard occurs on a small scale, 
its consequences will have a substantial impact on global scales. For example, 
gully erosion with disturbing the condition of sequestration and decomposition 
of soil organic carbon encourages instability in the atmospheric carbon dioxide 
concentrations and influences climate change (Xiao et al., 2017; Yigini and 
Panagos, 2016). To minimize this hazard and the related environmental 
problems, it is necessary to understand mechanisms controlling gully 
development. Furthermore, determining the magnitude and spatial distribution 
of erosion susceptibility zones can help to implement geo-conservation and 
management efforts for mitigating disasters associated with this hazard. 

The gully erosion susceptibility assessment is the first step towards geo-
conservation and restoration efforts in gully-prone areas (Conoscenti et al., 
2014). Multiple quantitative and qualitative models have been proposed to 
estimate this hazard, such as the Limburg Soil Erosion model, Universal Soil 
Loss Equation, European Soil Erosion model, Chemical Runoff and Erosion 
for Agricultural Management System, Water Erosion Prediction Project model, 
bivariate statistical models, and logistic regression. These models could not 
consider the interactions among factors controlling gully erosion, such as 
topographic variables, geo-environmental factors, soil conditions, land use/
cover, sediment yield, and climatic indices. Compared to bivariate and logistic 
regression models, machine learning algorithms are the ideal models to assess 
erosion susceptibility, which efficiently predict the probability of gullying with 
high accuracy (Micheletti et al., 2014). To date, some studies have predicted 
potential erosion-prone areas in watersheds using these models. Chen et al., 
(2021) predicted the gully erosion within a watershed located in Iran using 
boosting ensemble machine learning algorithms. Lei et al., (2020) evaluated 
gully erosion susceptibility in a catchment located in Iran using four data mining 
techniques, including random forest, credal decision trees, kernel logistic 
regression, and best-first decision tree. Arabameri et al., (2020) mapped erosion 
susceptibility by applying four models of support vector machine, artificial 
neural network, general linear, and maximum entropy in the Golestan Dam 
basin, Iran. Saha et al., (2020) delineated the areas with the most severe gully 
erosion susceptibility using the algorithms of tree ensemble, random forest, and 
gradient boosted regression tree. Pourghasemi et al., (2020) assessed the efficacy 
of multiple machine learning algorithms to predict gully erosion occurrence. 
Amiri et al., (2019) evaluated the importance of factors controlling gully 
development within a watershed and mapped its susceptibility using machine 
learning algorithms. Gayen et al., (2019) produced a gully erosion susceptibility 
map in the Pathro catchment, India using different machine learning algorithms. 
Garosi et al., (2019) compared the reliability and discrimination of four machine 
learning models to map gully erosion susceptibility in western Iran. 

In the present study, the importance of conditioning factors in gully 
erosion occurrence was assessed using the Boruta algorithm, as a feature 
selection algorithm that acts independently from the predictive models of gully 
erosion to determine the most important factors, while previous studies selected 
the most important causative factors based on the derivatives of the employed 
models. In the next step, the evidential belief function model was employed 
to evaluate the relationship between gullied locations and conditioning factors. 
Finally, considering the importance of this hazard and its global consequences, 
the present study employed predictive machine learning techniques, including 

support vector machine with two kernel types and boosted regression tree for 
modeling the occurrence of gully erosion within a prone watershed located in 
northern Iran. Finally, the predictive performance of the models was evaluated 
in terms of their discrimination and reliability.

Materials and Methods

Study region

The present study was implemented on Gorganrud watershed located 
in Golestan province, northern Iran (37◦30′00″ to 37◦50′00″N and 55◦31′40″ to 
56◦02′10″E) (Figure 1). The maximum and minimum altitude of the watershed 
is 2,180 and 46 meters above sea level. Based on the Iranian Meteorological 
Organization, the study area’s climate is semi-arid with an average annual 
temperature of 18.2 °C and 385 mm mean annual precipitation. More than 
half of the region exhibits mountainous morphology belonging to the Alborz 
Mountains, with a slope between 0-61°. Figure 4 illustrates the most important 
characteristics of the study region in terms of land use/cover and lithological 
structure. Rangeland is the dominant pattern of land use in the study region. 
In addition, loess deposits are the main deposits over the region. Based on the 
soil taxonomy system, the soil type of the studied region is classified under the 
Mollisol order. These factors caused that over 70% of the region suffered from 
various degrees of soil erosion as multiple rills and gullies. Mean annual soil 
losses caused by the gully erosion in the region estimate approximately 160 tons 
per hectare. The watershed area in the upslope parts of the rill and gully sites is 
variable between 2,000-43,070 m2. This condition strongly affected the rate of 
runoff discharge into rill channels, encouraging the accelerated progression of 
the channels (Figure 2).

Figure 1. Location of the study watershed (a) and gully erosion inventory map (b)

2.2 Methodology

The methodology employed in the present study includes the following 
steps: after the generation of the gully inventory map, information on twelve 
factors controlling gully development was prepared. In the next step, the spatial 
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correlation among gullied locations and causative variables was determined 
using the evidential belief function algorithm (EBF). The importance of 
causative factors was then weighed using the Boruta algorithm. In the final 
steps, the spatial prediction of gully erosion susceptibility was modeled using 
the support vector machine (SVM) model with two kernel types (linear kernel 
and radial basis function) and boosted regression tree (BRT) algorithm. The 
predictive performance of models was discriminated using the receiver 
operating characteristic curve (ROC) and the area under the curve (AUC). 
The reliability of model accuracy was also evaluated using the coefficient of 
determination (R2, for the calibration) and root mean square error (RMSE).

Gully inventory map

The first step for the modeling process is preparing the gully inventory 
map, exhibiting the spatial distribution of gullied locations within the study 
watershed. Considering the present and historical distributions of gullies, the 
future risk of the gully development can be predicted. Based on data taken from 
the Natural Resources Organization of Golestan province, gullied locations 
were determined. Then, these data were validated through field surveys and 
Google Earth images. Overall, 1,041 gullied areas were mapped in the study 
region. To split the gully data into two datasets of validation (30%) and train 
(70%), a randomly partitioned algorithm was employed using the Sub-set 
Features Tools in ArcGIS (Figure 1b).

Gully conditioning factors

Gully erosion is a threshold-dependent process, which different 
conditioning factors stimulate the occurrence and development of this hazard 
(Gayen et al., 2019). To predict gully erosion, using different machine learning 
models, the identification of factors affecting gully development is an important 
step. Based on previous studies (Zabihi et al., 2018; Arabameri et al., 2018) 
and field survey, twelve conditioning factors were considered as independent 
variables affecting erosion. 

Figure 2. Typical images taken from some gullies within the study region

These variables included elevation, slope gradient, slope aspect, 
topographic wetness index (TWI), stream power index (SPI), plan curvature, 
drainage density, distance from the river, distance from the road, distance from 
the fault, lithology, and land use/cover. 

The most important topographic factors that affect gully erosion are the 
elevation and slope gradient (Conoscenti et al., 2014). These factors significantly 
control vegetation density, climatic conditions, surface runoff, and drainage 
intensity. The slope aspect is another factor that plays a crucial role in the gully 
erosion process. This factor regulates the drying effect of winds, morphological 
structure of the watershed, and rate of rainfall, and related runoff, which in turn, 
influences the occurrence of gully erosion (Gayen et al., 2019). The erosive 
power of overland flows can be illustrated by the stream power index (Eq. 
1), which considers contributing area and slope. The soil moisture conditions 
within different slope positions can be evaluated by topographic wetness index 
(Eq. 2). Change in this index affects the erosive power of overland flow. The 
convexity and concavity of a watershed are determined by plan curvature (i.e. 
different watershed positions), which influences gullying.

All the terrain variables were extracted from the 20 m ASTER DEM. SPI 
and TWI were calculated as (Bell et al., 1995; Moore et al., 1993):

 (1)

 (2)

where Ac is the upslope area that drains through a certain point per unit 
contour length, which is equal to a certain grid cell width (Raduła et al.,2018). 

The occurrence of gully erosion is most probable along the fault, 
river, and road due to erosion and ground instability. Therefore, the maps of 
drainage density, distance from rivers, faults, and roads were prepared using a 
1:25,000-scale topographical map. The map of drainage density was generated 
in ArcGIS (Line Density tools). The maps of distance from fault, river, and road 
were generated using the Euclidean distance function in ArcGIS. The lithology 
map was produced based on the geological maps on a scale of 1:50,000. The 
land use/cover was mapped by using Landsat 8 satellite and Google Earth 
images. Figure 3 and Table 2 show the classification of all the conditioning 
factors.
Analysis of multi-collinearity among independent variables 

The multi-collinearity analysis represents the linear correlation among 
the measured independent variables. A very high correlation among factors 
encourages multi-collinearity. To determine the multi-collinearity of the factors, 
the variance inflation factor (VIF) and tolerance (TOL) were employed. The 
VIF greater than 5 and TOL less than 0.2 represent a high correlation between 
the variables. Since these high correlations reduce the accuracy of the results, 
factors with this characteristic should be removed from the final analysis. The 
following equations represent the calculation of VIF and TOL.

 (3)

 (4)

where  represents the regression value of j on other variables.

Assessment of correlation between independent variables and gullied locations

The EBF algorithm was employed to assess the relationship between 
the independent variables and gullied locations. This algorithm is based on 
the Dempster-Shafer theory (Dempster, 1967; Shafer, 1976), which evaluates 
the uncertainty sources affecting the occurrence probability. This statistical 
model includes the degree of disbelief (Dis), the degree of belief (Bel), the 
degree of plausibility (Pls), and the degree of uncertainty (Unc) (Althuwaynee 
et al., 2014). The Pls and Bel were defined as the lower and upper limits of 
probabilities. The uncertainty degree (Unc) determines based on Bel - Pls. Dis 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/support-vector-machine
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illustrates the degree of disbelief based on 1 – Unc – Bel or 1- Pls. The sum of 
Unc, Dis, and Bel is calculated as 1 (Lee et al., 2012; Carranza et al., 2005). 
Further information on this algorithm can be seen in the research of Park (2011).

Evaluation of the importance of independent variables

The selection of variables that have the most importance in gully erosion 
is a crucial step in the modeling process. The importance of the independent 
variables controlling gully erosion was determined by applying the Brouta 
algorithm. Boruta algorithm is a variable selection algorithm. It is a wrapper 
algorithm around Random Forest (Liaw and Wiener, 2002). When a dataset 
comprised of multiple variables is given for modeling, this algorithm can 
determine the most important conditioning variables.

Machine learning models for predicting gully erosion 

The Support vector machine model was initially presented as a 
supervised learning technique (binary classifier) that can consider linearly 
multi-dimensional and non-separable datasets (Kalantar et al., 2017; Kavzoglu 
et al., 2013). This model generates functions from a training dataset and can 
distinguish classes in high-dimensional feature space. In the present study, the 
factors controlling gully erosion (as different thematic layers) are considered as 
the high-dimensional feature spaces. Then, the optimal hyper-plane maximizes 
the margin to split into two classes, including non- gullying and gullying. The 
optimal hyper-plane was computed based on the equations below.

 (5)

 (6)}

Figure 3. Independent variables selected for assessing gully erosion susceptibility

Figure 3. (Continued)

where  is the penalty factor;  represents Lagrange multipliers. Regarding 
the present study, as a vector of input space includes factors controlling gully 
erosion. The non-gullied and gullied pixels were determined as +1 and −1, 
respectively.

This model decreases the possibility of over-fitting error and linearity and, 
therefore, has high efficiency to process data with nonlinear interactions by the 
kernel function (Naghibi et al., 2015). This algorithm has several kernel types 
to measure the errors that can significantly influence the prediction performance 
of the model and the result accuracy. The most important kernel functions of 
the SVM are: polynomial kernel, sigmoid kernel, radial basis, and linear kernel. 
This study compared the efficiency of the radial basis function (RBF-SVM) 
(Eq. 7) and linear kernel (LN-SVM) (Eq. 8) for modeling the gully erosion 
susceptibility.

 (7)

 (8)

where γ, d, and r are defined as kernel width, polynomial degree, and 
parameter of the kernel functions, respectively (Pradhan, 2013).

Boosted regression tree model (Eq. 9) adaptively combined machine 
learning techniques to produce an appropriate performance (Elith et al., 2008). 
BRT combines different regression algorithms and boosting builds to reduce 
the final model variance and enhance predictive accuracy (Aertsen et al., 2010). 
This model, with large volume of inputs, stimulated the speed in data processing 
and, subsequently reduced sensitivity to over-fitting. 

 (9)
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where , m, and are defined as a classification function with α parameters 
and x variables, the stage of the model, and the weighting factor m, respectively.

To process the models, the spatial correlation among conditioning 
variables and gullied locations was first calculated. In the next step, the data was 
transformed into the R statistical software. Finally, the maps of gully erosion 
susceptibility were generated in the ArcGIS software based on the outputs of the 
models. The susceptibility maps were classified into five categories, including 
low, very low, moderate, high, and very high susceptibility, using natural break 
algorithm in ArcGIS.

Evaluation of discrimination and reliability of the models

The predictive performance of models was discriminated using the 
ROC and AUC curves. The ROC curve plots sensitivity (X-axis) against 1- 
specificity (Y-axis), where sensitivity is the true positive rate and specificity is 
the true negative rate. AUC values close to 0.5 reflects the predictive ability of 
a random model, whereas value close to 1.0 reveals perfect accuracy. In this 
study, the AUC values were classified into four levels, including moderate (0.6 
to 0.7), good (0.7 to 0.8), very good (0.8 to 0.9), and excellent (0.9 to 1.0). The 
present research plotted the ROC curve based on both datasets of the train (70% 
of gullied locations) and validation (30% of gullied locations). The following 
equations were employed to draw the ROC curve:

 (10)

 (11)

where TP, FN, TN and FP are the true positive, false negative, true 
negative and false positive rates, respectively. 

Reliability of model accuracy was then evaluated using RMSE (Eq. 
12) and R2. RMSE is defined as the differences between the values actually 
observed (i.e. gullied locations in the region) and values predicted (i.e. gully-
prone areas based on the model predictions). A lower value for RMSE and a 
higher value for R2 show the robust performance of the models (Garosi et al., 
2019)

 (12)

where y (actual values of dependent factor), ỹ (predicted values of 
dependent factor), and N (sample size).

Results and Discussion

Multi-collinearity between variables controlling gully erosion

As shown in Table 1, TOL and VIF values for all the variables were 
higher than 0.2 and less than 5, respectively. The greatest values for VIF and 
the lowest coefficients for TOL were 2.38 and 0.42, respectively. This result 
illustrates no collinearity problem among the twelve independent variables and, 
therefore, all the factors were considered for the modeling process.

Table 1. Results of the collinearity among independent variables

Factor Tolerance VIF

Elevation 0.58 1.72

Slope 0.89 1.12

Aspect 0.96 1.04

River density 0.49 2.03

Lithology 0.84 1.19

Land use 0.92 1.09

Distance from river 0.44 2.25

Distance from fault 0.55 1.81

Distance from road 0.73 1.36

Plan curvature 0.42 2.38

Topographic wetness index 0.96 1.04

Stream power index 0.96 1.05

Importance of conditioning variables and their relationship with gully erosion

Table 2 shows the spatial correlation between the independent variables 
and the spatial distribution of gullied locations according to the results of the 
EBF method. The highest EBF value was observed in the elevation class of 
472-899 m asl (Bel= 0.54), followed by the elevation classes of 46–472 m 
asl (Bel= 0.39) and 899-1,326 m asl (Bel= 0.23). No gullying occurred in the 
highest elevation class, i.e., 1,753–2,180 m asl (Bel= 0). 

These findings showed that there is a negative correlation between 
elevation and gullied locations so that the greatest gullying occurred 
in lowland positions (values of plan curvature). The highest gullying 
occurred in the slope classes of 5-10° (Bel= 0.88) and 10-20° (Bel= 0.61). 
Furthermore, gullies frequency significantly decreased in the slope classes 
higher than 20° (Bel= 0.30). The most frequent occurrence of gullies was 
observed in the northeast, east, southeast, south, southwest, and northwest 
directions. The highest values for river density were observed in the classes 
of 1.01-1.26 m/m2 (Bel= 0.53) and 0.76-1.01 m/m2 (Bel= 0.44). In the case 
of lithological units, gully erosion showed its highest occurrence in weak 
textured soils, i.e., loess (Bel= 0.76) and marl (Bel= 0.57). Based on Table 
2, the highest and the lowest gullying occurred in the rangeland (Bel= 
0.73) - shrubland (Bel= 0.41) and forest (Bel= 0.12), respectively. The 
results of distance from rivers showed that the occurrence of gully erosion 
increased as the distance to rivers decreased (Bel= 0.53 for the class of 
0-658 m and Bel= 0.40 for the class of 658-1,515 m). Furthermore, the gully 
erosion occurrence reached zero in the highest distance to rivers (classes 
of 4,189-6,341 m and 6,341-9,746 m). The EBF exhibited the highest 
weight of distance from fault in the class of 3,000-6,000 m (Bel= 0.49). 
Therefore, the EBF decreased (i.e. decreasing gullying) as the distance 
from the fault increased. The probability of gullying increased as distance 
to the roads decreased (Bel= 0.59 for the class of 500-1,000 m and Bel= 
0.47 for the class of 0-500 m). These findings show the crucial effect of 
the road network on increasing the probability of gully erosion occurrence 
due to the anthropogenic destruction of natural hydrological processes that 
encourages the accumulation of surface runoff and accelerates broad-scale 
soil erosion. The EBF value for plan curvature was highest in the concave 
positions (Bel= 0.61), compared with the convex positions (Bel= 0.23). The 
highest EBF weights for TWI were observed in the classes of 12-15.6 (Bel= 
0.36) and 9-12 (Bel= 0.35). Therefore, the probability of gullying enhanced 
in higher topographic wetness. Further, the greatest gullying occurred in the 
highest SPI (Bel= 0.61 for the class of 0-7), illustrating the probability of 
gully erosion is higher in higher stream power. 
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Table 2. Correlation among conditioning factors and gully erosion based on the EBF model

Factor Class Bel Dis Unc Pls

Elevation (masl)

46 - 472.8 0.39 0.05 0.65 0.94
472.8 - 899.6 0.54 0.17 0.28 0.82
899.6- 1326.4 0.23 0.09 0.76 0.90

1,326.4 – 1,753.2 0.03 0.51 0.45 0.48
1,753.2 – 2,180 0 0.16 0.83 0.83

Slope (degree)

0 – 5 0.12 0.25 0.61 0.74
5-10 0.88 0.21 0.09 0.78
10-20 0.61 0.02 0.76 0.97

20 – 30 0.30 0.55 0.23 0.44
>30 0.34 0.00 0.74 0.99

Aspect

Flat 0.06 0.54  0.38 0.45
North 0.09 1.08 -0.18 -0.08

Northeast 0.21 0.41  0.47 0.58
East 0.22 1.66 -0.78 -0.66

Southeast 0.25 0.78  0.05 0.21
South 0.27 0.14  0.67 0.85

Southwest 0.24 0.12  0.73 0.87
West 0.01 1.14 -0.15 -0.14

Northwest 0.21 0.75  0.134 0.24

River density (m/m2)

0 - 0.253 0.04 0.29 0.66 0.70
0.253 - 0.507 0.19 0.13 0.67 0.86
0.507 - 0.761 0.37 0.19 0.53 0.80
0.761 - 1.014 0.44 0.17 0.57 0.82
1.014 - 1.268 0.53 0.21 0.55 0.78

Lithology

Limestone 0 0.00 0.99 0.99
Colluvium 0.00 0.11 0.88 0.88

Shale 0 0.11 0.88 0.88
Conglomerate & sandstone 0 0.01 0.98 0.98

Loess 0.76 0.10 0.73 0.90
Marl 0.57 0.10 0.72 0.89

Land use/cover

Cultivated land 0.31 1.45 -0.77 -0.45
Forest 0.12 0.15 0.72 0.84

Bare land 0.26 0.10 0.63 0.89
Shrubland 0.41 1.45 -0.77 -0.45

Water body 0 0.00 0.99 0.99
Residential 0 0.01 0.98 0.98
Rangeland 0.73 1.87 0.03 0.08

Distance from river (m)

0 - 658.28 0.53 0.15 0.63 0.84
658.28 – 1,515.49 0.40 0.21 0.58 0.78

1,515.49 – 2,574.91 0.06 0.10 0.83 0.89
2,574.91 – 4,189.32 0.03 0.00 0.95 0.99
4,189.32 – 6,341.47 0 0.04 0.95 0.95
6,341.47- 9,746.22 0 0.41 0.58 0.58

Distance from fault (m)

0 – 3,000 0.18 0.31 0.49 0.68
3,000 – 6,000 0.49 0.10 0.60 0.89
6,000 – 9,000 0.16 0.11 0.72 0.88
9,000 – 14,000 0.18 0.11 0.70 0.88
14,000 – 19,000 0.13 0.11 0.74 0.88
19,000 – 23,000 0.03 0.11 0.85 0.88
23,000 – 36,363 0 0.12 0.87 0.87

Distance from road (m)

0 – 500 0.47 0.01 0.50 0.98
500 – 1,000 0.59 0.21 -0.02 0.78

1,000 – 3,000 0.16 0.11 0.72 0.88
3,000 – 6,000 0.33 0.24 0.51 0.75
6,000 – 9,000 0.03 0.31 0.64 0.68
9,000 – 11,963 0 0.10 0.89 0.89
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Factor Class Bel Dis Unc Pls

Plan curvature
Convex  (> 0.15) 0.23 0.40 0.35 0.59
Concave (< -0.15) 0.61 0.29 0.11 0.70
Flat (-0.15 - 0.15) 0.16 0.11 0.72 0.88

Topographic wetness index

3.5 – 6 0.15 0.02 0.82 0.97
6 – 9 0.23 0.32 0.44 0.67
9 – 12 0.35 0.43 0.30 0.56

12 – 15.6 0.36 0.21 0.42 0.78

Stream power index
-16 - -10 0 0.02 0.97 0.97
-10 – 0 0.38 0.19 0.41 0.80
0 – 7 0.61 0.77 -0.39 0.22

Based on the results of the Boruta algorithm, slope gradient (25.65), 
land use (10.65), lithology (10.94), plan curvature (7.15), elevation (6.30), 
river density (5.30), distance from river (5.12), were the most important factors 
that controlled gully erosion susceptibility (Table 3). The lowest importance 
variables for gully erosion susceptibility were slope aspect (1.53), distance from 
road (2.15), TWI (2.19), distance from fault (2.91), and SPI (2.93).

Table 3. Importance of independent variables based on Boruta algorithm

Factor Mean
importance

Median
importance

Min
importance

Max
importance

Slope 25.65 25.15 10.88 22.24
Land use 10.65 10.80 7.01 12.34
Lithology 10.94 10.85 7.20 14.50

Plan curvature 7.15 7.20 4.85 9.21
Elevation 6.30 6.80 4.49 8.98

Drainage density 5.30 5.10 3.45 7.20
Distance from river 5.12 5.36 3.05 7.13
Distance from fault 2.93 1.56 0.18 2.12
Stream power index 2.91 2.87 1.87 4.00

Topographic
wetness index 2.19 2.17 -1.35 3.11

Distance from road 2.15 2.19 1.24 3.58
Aspect 1.53 2.89 1.76 4.39

As can be seen in the research of Garosi et al. (2019), Amiri et al. (2019), 
and Rahmati et al. (2017), steep slopes, intensively cultivated hillslopes, and the 
presence of loess soils significantly encourage the formation and development of 
gullies in watershed environments. However, in the study region, the occurrence 
of gully erosion was predominant in the slope classes of 5°–10° and 10°–20° and 
lower elevations (472-899 masl), illustrating the most frequent erosion occurred in 
the lowland watershed positions. Almost no gullying occurred in the upper positions 
and slopes higher than 20°. The predominance of gullied locations on the concave 
positions, with the slope of 5°–20° in the vicinity of drainage lines (factor of distance 
from the river), illustrates a preferential topographic zone and, therefore, a terrain 
threshold for gullying. Furthermore, the results of the EBF model showed the 
predominance of gully erosion on rangeland and loess-marl deposition (Figure 4).

Loess, due to weak structure and poor organic matter and nutrient content, 
and marl, with a high plasticity potential, significantly encourage the formation 
and development of gullies (Razavi-Termeh et al., 2020; Arabameri et al., 2020; 
Garosi et al., 2019). The highest distribution of the rangelands and loess-marl 
depositions occurred on concave positions of the study watershed where the slope 
angle tends to be lower. Despite some studies showed the predominance of gullied 
locations on steep slopes, the findings of this study illustrated how land use/cover 
and lithological structure could stimulate the low topographic thresholds for gully 
development. The development of gullies on rangelands and weak textured soils 
within the lower concave positions of the study region is consistent with the 
threshold concept that “a given soil, land use, and climate within a given landscape 
encourage a given drainage area and a critical soil surface slope that are necessary 
for gully incision” (Kakembo et al., 2009; Poesen et al., 2002). Considering given 
environmental conditions, when a certain topographic threshold is exceeded, 
gully heads develop. Therefore, the threshold exhibits an inverse relationship 
between surface runoff discharge and critical surface slope for incision. 

Assessment of erosion susceptibility using SVM and BRT models and their 
validation 

To predict gully erosion, the maps of erosion susceptibility were 
generated based on the results of the SVM and BRT algorithms and the 
related conditioning factors. These maps exhibited five susceptibility 
degrees for gullying (Figure 5). The gully erosion susceptibility map 
obtained from the LN-SVM model illustrated that 24.51% of the watershed 
area experienced very high susceptibility, while 24.49% and 7.01% of the 
watershed area exhibited low and very low susceptibility, respectively 
(Figure 5a). The results of the RBF-SVM model exhibited that 9.94%, 
41.14%, 7.15%, 7.46%, and 34.30% of the watershed have very low, low, 
moderate, high, and very high susceptibility, respectively (Figure 5b). 
Further, based on the results obtained from the BRT model, 9.64%, 24.33%, 
34.84%, 7.44%, and 26.42% of the watershed have very low, low, moderate, 
high, and very high susceptibility, respectively (Figure 5c). 

Figure 4. Spatial distributions of gullied locations in different types of land use (a) 
and lithological units (b)
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Figure 5. Gully erosion susceptibility maps based on LN-SVM (a), RBF-SVM (b), 
and BRT (c) models

The results of the two machine learning algorithms successfully assessed 
the gully erosion-prone areas within the watershed (Figure 6). The validation 
results (AUC values) for discriminating the predictive performance of the 
models illustrated that the two machine learning models were very good for 
delimiting gully-prone areas with high accuracy. The BRF-SVM (AUC= 0.89) 
was the most robust model, illustrating the best prediction rate, while LN-SVM 
did not show an acceptable accuracy (AUC= 0.77). The BRT model (AUC= 
0.85) was the second optimal model for predicting erosion susceptibility in 
the region. Furthermore, the AUC values of training datasets were 0.96 for the 
BRF-SVM model and 0.95 for the BRT model. Further, the results of statistical 
indices associated with the reliability of the models (RMSE and R2) illustrated 

that the model of BRF-SVM, followed by BRT had the lowest RMSE and the 
highest R2 (i.e. the most reliable models to assess the gully erosion-prone areas) 
compared with the LN-SVM (Table 4). 

Figure 6. The area under the curve (AUC) based on train (a1-a3) and validation 
(b1-b3) datasets for discriminating the accuracy of LN-SVM, RBF-SVM, and BRT 

models

Nonparametric methods such as SVM and BRT are appropriate 
approaches to solve problems related to modeling. These algorithms can 
manage the collinear relationship among conditioning factors. Other researchers 
(Amiri et al., 2019) expressed that the most important advantage of the BRT is 
eliminating variables with a large number of missing values compared with 
other models. As some studies showed (Pourghasemi et al., 2017; Marjanović 
et al., 2011), the improvement of the AUC values for validation and train data 
in different replicates is the most important advantage of the support vector 
machine algorithm. This characteristic caused this model could handle complex 
and nonlinear relationships, in comparison with models such as the artificial 
neural network. The findings of this study showed that the models of SVM 
and BRT with considering the interaction between independent variables could 
appropriately model gully erosion-prone areas with a high accuracy, as other 
studies reported (Gayen et al. 2019; Rahmati et al., 2017; Elith et al., 2008). 
Overall, the gully erosion susceptibility maps could provide an appropriate 
strategy for geo-conservation and restoration efforts in gully erosion-prone 
areas within the study watershed.

Table 4. Reliability of model accuracy based on the coefficient of 
determination (R2) and root mean square error (RMSE)

Model
Train Data (70%) Validation Data (30%)

R2 RMSE R2 RMSE

SVM
(Linear Kernel) 0.34 0.43 0.13 0.46

SVM
(Radial Basis Function) 0.91 0.23 0.76 0.32

BRT 0.83 0.29 0.64 0.38
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The interactions among various variables such as terrain indices, 
lithological characteristics, and land use/cover changes affect linear erosion 
development as rilling and gullying, which irreversibly threaten the health and 
resilience of soil systems. This study shows the results obtained by applying 
two machine learning methods for predicting the gully head cut susceptibility 
in northern Iran, as the second country in the world in terms of soil erosion. 
Mean annual soil losses caused by the gully erosion in this country estimate 
approximately 2.5 billion tons. These models can be appropriate tools to 
understand mechanisms controlling gully erosion and, therefore, can help to 
implement geo-conservation and management efforts for mitigating disasters 
associated with this hazard.

Conclusions 

Soil degradation induced by gully erosion is the most critical challenge 
faced by many of the world’s dryland regions. Although this hazard occurs on a 
small scale, its consequences will have a substantial impact on global scales, for 
example, the impacts of gully erosion on the degradation of a large amount of 
OC-rich topsoil that is combined with deeper horizons poor in OC. This event 
stimulates carbon mineralization and, subsequently, affects the exchange of 
carbon between the atmosphere and the pedosphere and associated instability in 
the carbon dioxide concentrations of the atmosphere. Therefore, to mitigate this 
hazard and the related environmental problems, it is necessary to understand 
the mechanisms controlling gully erosion. The results of this study showed the 
efficiency of two machine learning algorithms, including BRT and SVM, in 
the prediction of erosion susceptibility in northern Iran. Based on the results of 
the Boruta algorithm, slope gradient, land use, lithology, distance from river, 
elevation, river density, distance from fault, plan curvature, and SPI were the 
most effective factors that controlled the occurrence of gully erosion in the study 
region. Further, the results of the EBF model showed the spatial relationship 
among causative variables and gullied locations. Based on these findings, 
topographic thresholds for gully erosion tended to be lower on rangeland and 
weak textured soils, such as loess and marl. Furthermore, the spatial correlation 
of gullying with rangeland and weak textured soils within concave positions 
illustrated that the interactions among soil characteristics, topography, and land 
use could stimulate a low topographic threshold for gullying. The validation 
results related to the statistical indices of the reliability and discrimination 
accuracy of the models showed that the two machine learning models were very 
good for demarcating gully erosion areas with high accuracy. The BRF-SVM 
was the most robust model (AUC= 0.89; R2= 0.91; RMSE= 0.23), illustrating 
the best prediction rate. The BRT model (AUC= 0.85; R2= 0.83; RMSE= 0.29) 
was the second optimal model for predicting erosion susceptibility in the region. 
The gully erosion susceptibility maps could provide an appropriate strategy for 
geo-conservation and restoration efforts in gully erosion-prone areas within the 
study watershed.
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