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ABSTRACT
The advent of GPS provided a new way of measuring surface displacements due to earthquakes by deploying GPS 
networks within active seismic areas. Japan is located in the confluence of several tectonic plates, hence its seismicity. 
In order to surveille this activity, one of wider GPS network in the world was deployed, i.e., GEONET. By processing 
data from 93 GEONET reference stations, we analyze the 2011 Tohoku-Oki earthquake using PPP strategy. We stu-
died the time series during the event setting up a threshold value at we consider the time series are being altered by 
the earthquake. We also identified the time after the occurrence when the maximum displacements happen. With the 
study of these two parameters, we aim to show their different behavior as the main shock propagates along the Japan 
islands, with a focus on a better understanding of the earthquake and its propagation. To achieving this, a least square 
adjustment method was used to relate epicentral distance to topocentric displacements and the time of detection to 
epicentral distance. The results show an exponential behavior of the distance-displacement regression versus a linear 
behavior of the distance-time regression. Besides, we use the former linear regression to calculate and approximation 
of the velocity of the shock waves.

Keywords: Seismogeodesy; gps; Tohoku-Oki; 
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Detección y estudio de un evento sísmico de gran magnitud a partir de datos GPS: 
 Caso de estudio del terremoto Tohoku-Oki de 2011

RESUMEN

La aparición del GPS proporcionó una nueva forma de medir los desplazamientos en superficie debidos a los terremotos 
mediante el despliegue de redes de GPS en zonas sísmicas activas. Japón está situado en la confluencia de varias placas 
tectónicas, de ahí su sismicidad. Para vigilar esta actividad, se desplegó una de las redes de GPS más amplias del mundo, 
i.e., GEONET. Al procesar los datos de 93 estaciones de referencia de GEONET, analizamos el terremoto de Tohoku-Oki 
de 2011 utilizando la estrategia PPP. Estudiamos las series temporales generadas durante el evento estableciendo un valor 
umbral en el que consideramos que las series temporales están siendo alteradas por el terremoto. También identificamos el 
momento posterior al suceso en el que se producen los máximos desplazamientos. Con el estudio de estos dos parámetros, 
pretendemos mostrar su diferente comportamiento a medida que la sacudida principal se propaga a lo largo de las islas 
de Japón, con el objetivo de comprender mejor el terremoto y su propagación. Para ello, se utilizó un método de ajuste de 
mínimos cuadrados para relacionar la distancia epicentral con los desplazamientos topocéntricos y el tiempo de detección 
con la distancia epicentral. Los resultados muestran un comportamiento exponencial de la regresión distancia-desplaza-
miento frente a un comportamiento lineal de la regresión distancia-tiempo. Además, utilizamos la primera regresión lineal 
para calcular y aproximar la velocidad de las ondas de choque
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1. Introduction

Initially, GNSS systems and permanent station networks were used to 
create time series, from which the velocities of the stations that comprises the 
geodetic networks were extracted, thus allowing the creation of a deformation 
model that enables the study of the geodynamics of the area covered (Feigl et 
al., 1993; Freymueller et al., 1993). For these kinds of studies, a 30 or even 
300 second decimate is sufficient, since the time series are created from several 
years of observations (Members BIFROST Project, 1996). The implementation 
of geomatic techniques were also expanded to other fields like hydrology with 
successful results (Arab Amiri & Gocic, 2021; Arab Amiri & Gocic, 2021; 
Gocic & Arab Amiri, 2021).

The development of GNSS receivers allowed large sampling frequencies 
(1 Hz or higher). On the other hand, it also improved the quality of accurate 
products (Bock et al., 2009; Altamimi et al., 2007) (i.e. corrections of satellite 
clock states, orbits, etc...). This improvement in the precise products is 
materialized into the evolution of the processing techniques, allowing better 
estimates that are close to the processing in near real time (Colosimo et al., 
2011). Such development allows the use of conventional models for the analysis 
of GNSS data generated by the stations during seismic events (Ge, 1999; Ge 
et al., 2000; Hirahara et al., 1994; Larson, 2009), where large displacements 
are obtained in short intervals of time, typical circumstance during a great 
magnitude earthquake.

The increasing number of geodetic networks with sampling frequencies 
of 1 Hz or higher, is a very useful tool for the study of seismic events (Zheng et 
al., 2012), complementing the traditional methods (Li et al., 2013). They allow, 
in addition to the study of the cortical deformation in time (Bock, 1991), before 
and after the rupture, to record the displacements experienced by the stations 

during the event (Michel et al., 2017), with increasing accuracy. GNSS systems 
have great advantages over traditional seismic equipment. For instance, they do 
not get saturated in case of big accelerations and offer a direct measurement of 
the cosmic displacement, being the seismogeodetic networks a useful tool for 
the study of seismic events.

The area that encompasses the islands of Japan is one of the most 
tectonically active areas, hence the great importance of cortical deformation 
monitoring. It is a region characterized by the interactions of 4 tectonic plates 
(Yoshioka et al., 1994) (the Euro-Asian plate, the Pacific plate, the Philippine 
Sea plate and the Okhotsk plate) (Bird, 2003), being the central part of Japan 
the most active (figure 1). The tectonics of the region originates a high seismic 
and volcanic activity. Subduction zones are created in the convergence zone of 
two plates, when the oceanic plate slides under the continental one. In Japan, 
there are several of them, like the convergence of the Pacific and Euro-Asian 
plates (Hashimoto et al., 2004) or in the southern zone, with the Euro-Asian 
and Philippine Sea plates (Furukawa, 1999). The landslide that occurs in the 
subduction zone (Brizzi et al., 2018; Métois et al., 2012; Mazzotti et al., 2000) is 
the result of a combination of displacements generated by both earthquakes and 
the displacement of the plates (Chlieh et al., 2008). The accumulated movement 
during the inter-seismic period generates the energy that is later released with 
a seismic event. The measurement of the cortical deformation during this 
period is key to understand the recurrence of earthquakes (Wallace et al., 2004), 
especially those of great magnitude.

The central area of the main island of Japan is affected by the interaction 
of the plates formerly mentioned that generates subduction zones due to their 
collides (Loveless, J. P., and B. J. Meade, 2010). The Pacific and Euro-Asian 
move opposite each other subducting beneath the Kanto region, close to the 
epicenter of the earthquake. This fact is one of the reasons the high number of 

Figure 1. Representation of the limits of the four plates that converge in the zone of Japan represented by the red line, the centroids of the earthquakes of magnitude greater 
than 4 occurred in the year before the earthquake, the volcanoes and the epicenter of the earthquake represented by a star.
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seismic events (Nishimura T., Sagiya, T., Stein, R. 2007) that have struck the 
surrounding areas. There are several of these events recorded, like the 1923 
Kanto earthquake whose rupture stroke the area along the confluence of the 
Euro-Asian and Philipine plates (Shishikura, 2003; Ishibashi, 2004).

Another interaction that affects the central region of Japan is the Okhotsk 
plate moving South while collides with Euro-Asian plate on its way to East 
(Zhao et al., 2018). To the south, the Philippine Sea plate is subducting beneath 
the Euro-Asian plate. Besides, the Pacific plate subducts beneath the Philippine 
Sea plate due to their different velocities. The former interactions imply the 
central region of Japan is surrounded by a complex tectonic activity that 
generates several subduction areas (Katsumata, K., N. Wada, and M. Kasahara, 
2003) and faults, source of the high seismicity in the region (Hindle, D., and K. 
Mackey, 2011) and its recurrency (Shelly, R. et al., 2006; Kano, M. et al., 2018). 
As a consequence, a great number of high magnitude events were recorded in 
the area. Some examples are the 1993 Kushiro-Oki earthquake (Suzuki and 
Kasahara, 1996; Ozel and Moriya, 1999) and the 1994 Hokkaido-Toho-Oki 
earthquake (Kikuchi and Kanamori, 1995; Katsumata et al., 1995) both with a 
magnitude greater than 7.5.

The cortical deformation (Fujita et al., 2019; Kumar et al., 2002) 
generated by the tectonic plates in the area reaches values over 50 mm/
year in several points (Sagiya et al., 2000; Sagiya et al., 2002; Simons et al., 
2011). The deformation occurs along the different collide zones of the plates, 
generating several subduction zones (Ozawa et al., 2004; Kumar et al., 2002). 
The geodynamic complexity of the zone is materialized in an important seismic 
activity (Ozawa et al., 2005), with events of great magnitude along history (e.g., 
Ozawa et al., 2004; Watanabe et al., 2006). The register of past events is a tool 
that allows to characterize the seismicity of the zone (Tajima et al., 2013; Ide 
& Aochi, 2013). Another tool that has allowed the study of the seismic of the 
zone is the satellite positioning systems, which allow to measure the surface 
deformation (Li et al., 2020; El-Fiky & Kato, 2006) giving an idea of the 
displacement of the plate on which the station is located as well as the numerical 
simulation of earthquakes (Sagiya et al., 2000).

On March 11, 2011, a strong earthquake occurred off the northeast coast 
of Honshu Island, shaking the islands of Japan. The event was originated in the 
subduction zone located at the confluence of the Pacific and North American 
tectonic plates (i.e., Okhotsk plate), which have a relative motion velocity 
of about 8 cm/year. Although the epicenter is located 130 km from Japanese 
territory, its effects on the main island were devastating. This fact make very 
complicated the measurement of near field offsets (P. K., Gautam et al., 2019). 
This earthquake is one of the largest recorded with seismic instrumentation (M 
9.0) and GPS. Its ground motion effects have been widely studied using seismic 
equipment (Goto, H & Morikawa, H., 2012; Hirose, F., 2011; Ishii, M., 2011; 
Suzuki, W. et al., 2011), since there are also huge seismic networks all over the 
islands (e.g., K-Net). The processing of the GNSS data allows to obtain the field 
of coseismic displacements on the ground, obtaining values without the need of 
integrating acceleration values coming from seismometers.

While traditional methods use seismic data, GNSS data or a combination 
of both for studying seismic events (Melbourne, T. et al., 2002; Hsu,Y. et al., 
2006; Ohta, Y. et al., 2012; Larson, K. M., P. Bodin, and J. Gomberg 2003; 
Ohta, Y. et al., 2008), we propose to focus on the combination of temporal and 
displacement values derived only from GPS data to evaluate the propagation 
of the earthquake instead of the mechanism process (Yakota, Y., et al., 2009). 
After constructing the temporal series of each station, we managed to figure out 
a threshold value to assume the station is by fact being affected by the seismic 
waves. From there, we analyzed the trend of this time variation versus the 
epicentral distance, what also let us calculate an approximation of the wave 
velocity based only on the time series of the GPS stations, not on seismic data 
(Stein, S., and E. A. Okal 2005). Previous aproximations of the velocity of the 
wave were made only by using a few stations (Zheng, Y., et al., 2012), but 
with higher rates of data (5 Hz). Furthermore, we calculated the coseismic 
displacements again based only on GPS data, with independence of seismic 
data inversion.

2. Data and processing

Japan has a dense geodetic network in its territory, known as GEONET, 
whose deployment began in 1993 by the Geographical Survey Institute (GSI), 
motivated by the number of seismic events that were recorded in the area. In 

1996, the network had more than 400 stations, growing to more than 1300. This 
network makes Japan one of the countries with the greatest amount of GNSS-
based information for geodynamic studies in the world.

Stations maintain a homogeneous pattern, being the typical configuration 
a monument on which the antenna is installed, a dual-frequency GPS receiver 
and a modem connected to a telephone line for data transmission. The receivers 
are Trimble or Topcon brand, and all the stations are equipped with Chokering 
type antennas, model TRM29659.00. The average distance between stations 
is 20 km, with a maximum distance of 40 km (Sagiya, 2004), which provides 
an enormous amount of data. Initially the network was configured to work at 
a decimate of 30 seconds, although technological evolution allowed the GSI 
authority to increase the sampling frequency of stations to 1 Hz. On the other 
hand, the increase in bandwidth allows observation data to be transmitted in real 
time to the control center for processing.

For this study, data from 93 stations belonging to the GEONET network 
have been used, located in the area where the largest cosmic displacements 
were recorded (Grapenthin & Freymueller, 2011) during the 2011 Tohoku-Oki 
earthquake (between latitude 37 and 40 degrees North, 136 and 142 degrees 
East, figure 2).

With this work we aim to a better understanding of the earthquake 
focusing on the study of different parameters. By defining a time of detection 
and comparing it with the time when the maximum displacement is reached, 
we were able to see the evolution of the shock wave by comparing the different 
results obtained by each station. Besides, by calculating the displacements and 
obtaining a least square regression, we manage to model the real effect of the 
earthquake on each site, with the possibility of giving an approximate value of 
displacement and time of arrival of the seismic wave. This information could 
be very valuable to reinforce earthquake early warning systems, when using 
IGS ultra-rapid ephemerides. Once the earthquake is detected, according to the 
methodology, in the closest GPS station to the epicenter, a prediction of the 
displacements and time of arrival could be calculated.

3. Analysis

The analysis of the time series is based on the study of different parameters 
related to time and displacement (normal distribution is plotted on figure 
5), obtaining also, from the local geodesic coordinates, the 2-D topocentric 
displacements (i.e., the horizontal displacement). The studied temporal 
parameters aim to detect the influence that the earthquake exerts on the time 
series in local geodetic coordinates. Therefore, what is sought are the moments 
in which it is appreciated in an unequivocal way that the variation on the time 
series generated by each station is due to the earthquake (i.e., the main tremor 
causes an alteration in the series not induced by the errors of the processing 
strategy), as well as the time values in which the maximum variation in the 
time series is registered. The latter, when compared with the distance to the 
epicenter, allows us to see the behavior of the event as the seismic waves evolve 
throughout the Japanese territory. The displacement parameters characterize the 
magnitude of the event and are defined from the averages of the time series in 
the instants previous to the earthquake (from the second 19000). When these 
averages exceed the threshold value of 3 times the average (value defined for 
this study), it is considered that the effect of the earthquake is recorded by the 
station. Likewise, to characterize the evolution of the event, the maximum 
values of the local geodetic coordinates E and N are used.

Daily (24 hours) RINEX files were processed from 93 stations located 
in the central and northern regions of Japan, corresponding to the 70th day of 
the year 2011 (March 11), with a sampling frequency of 1 Hz, covering the 
entire period of the earthquake (starting at 05:46:23 UTC). GIPSY-OASIS 
software (Lichten & Border, 1987; Zumberge et al., 1997), version 6.1, is used 
for processing, using the precise products (Héroux et al., 2001) generated by 
NASA’s Jet Propulsion Laboratory. Specifically, the final ephemeris, calculated 
for the IGb08 reference frame, were used, refining the models of the phase centers 
of the receiver and satellite antennas (Schmid et al., 2007). These ephemerides 
have a latency of 14 days and provide 3-D RMS accuracies of 2.5 centimeters in 
the determination of the position of the satellites of the constellation. The GMF 
function (Boehm et al., 2007) is used to reduce errors related to the tropospheric 
delay. The oceanic tidal load model used is FES2014b, whose values are 
obtained from the website http://holt.oso.chalmers.se/loading/.

http://holt.oso.chalmers.se/loading/
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Figure 2. Disposition of the stations belonging to the GEONET network that were used in this study, as well as the epicenter of the Tohoku-Oki earthquake
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Figure 3. E and N time series corresponding to stations 049, 175, 206, 546, 550, 551, 795, 933, 936, 937 939, 940. The vertical red line marks the beginning of the 
earthquake. The period represented goes from 500 seconds before the earthquake to 500 seconds after it. Stations distributed along the study area are chosen

The data are processed in kinematic mode using the PPP strategy (Ge 
et al., 2008; Gao & Shen, 2002; Martín et al., 2012). Kinematic processing is 
chosen to avoid the effects of precursor events occurring in the hours prior to 
the earthquake. After the processing, the series corresponding to the geocentric 
Cartesian coordinates in the IGb08 reference frame are calculated. These series 
of coordinates are transformed into local geodetic coordinates E, N, U using 

Figure 4. E and N time series corresponding to stations 049, 175, 206, 546, 550, 551, 795, 933, 936, 937 939, 940. The series begin in the instant of the beginning of the 
earthquake (second 20783 of the day in UTC time), and extends an interval of 300 seconds. The image is represented as a zoom to better appreciate  

the evolution of the earthquake

Matlab software, using first the function “ecef2geodetic” that converts the 
ECEF (Earth Centered Earth Fixed) coordinates of each station into a reference 
value in geodetic coordinates (latitude, longitude and height). The time series 
are then generated in local geodetic coordinates using the “ecef2enu” function 
(Figure 3). In addition, Matlab will also be used to study the processing results, 
programming the least-squares regression algorithms in this software.
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Different parameters related to time and displacement will be studied 
on the time series, obtained also, from the local geodesic coordinates, the 2-D 
topocentric displacements (i.e. the horizontal displacement).

The magnitude of the event is represented with horizontal displacements 
that in several cases reach meters (Figure 4), showing its attenuation as the 
stations move away from the epicenter (e.g., there is a large difference between 
the magnitude of the displacement between stations 206 and 546, whose 
distances to the epicenter vary by 74 km). The representation of the series 
corresponding to the different stations also gives an idea of the arrival time 
of the main shock. The time differences are quantifiable and are parameter 
to analyze the evolution of the earthquake along the territory. However, this 
only reflects the propagation of the wave, without allowing to calculate its 
characteristics or a detailed observation of the rupture process (Ozawa et al., 
2011), serving as an initial approximation focused on a quick determination 
of parameters of interest related to the earthquake, which allows to feed, for 
example, early warning systems, being, for instance, a verifying element that 
an earthquake is happening. To obtain rupture models or waveforms from 
GPS data, more information from other measuring equipment (i.e., seismic 
equipment) is needed (Zheng et al., 2012).

The positions of the stations represented in Figures 3 and 4, as well as 
the distances (measured in kilometers) to the earthquake epicenter are shown in 
Table 1. Table 2 shows the values of the E and N displacements, as well as the 
displacement modulus. These 12 stations have been chosen as a representation 
of the study carried out following a criterion of distance to the epicenter. Stations 
with a wide range of distances ranging from a minimum of 87 kilometers to a 
maximum of 248 kilometers have been taken, the minimum distances used in 
the study being 87 kilometers and the maximum 654 kilometers.

The horizontal displacements are obtained from the modulus of the vector 
resulting from the composition of the displacement vectors E and N in local 
geodetic coordinates and centered at every station. The horizontal displacement 
vectors are the result of the difference between the mean values of the time 
series between the beginning of the day and the second 20783 UTC (instant at 
which the earthquake occurs) and between the second 21283 UTC and the end 
of the day (or the end of the records, since some stations stop working due to 
structural or electrical network damage after the main shock). It is during the 
500 seconds after the main shock that peak displacement values are recorded 
(Simons et al., 2011).

The results show a maximum displacement of 5.02 meters and a 
minimum value of 0.04 meters in the E coordinate, and a mean value of 1.48 
meters and a standard deviation of 0.98 m, while the maximum and minimum 
displacement values (in absolute value) for the N coordinate are 1.82 meters 
and 0 meters respectively, with a mean value of 0.58 meters and a standard 
deviation of 0.50 m. On the other hand, we obtained a maximum 2D topocentric 
displacement of 5.24 meters and a minimum value of 0.04 meters in the farthest 
station studied, with a mean value of displacement of 1.62 meters and standard 
deviation of 1.05 m.

Table 1. Location and distance to the epicenter of stations represented 
 in figures 3 y 4

Station Latitude Longitude Distance (km.)
49  139.5096 E  38.2307 N 250.4
175  141.4494 E  38.6827 N 89.65
206  139.3643 E  37.3028 N 287.73

546  141.5755 E  39.1431 N 114.32
550  141.5007 E  38.3012 N 75.98
551  139.8489 E  39.8911 N 279.01
795  141.4526 E  39.8490 N 187.15
933  140.2205 E  38.6284 N 190.54
936  140.4468 E  37.8335 N 177.15
937  139.9727 E  37.6693 N 222.60
939  139.8355 E  37.4613 N 242.45
940  140.4640 E  37.4449 N 193.80

Table 2. E and N coordinates displacement, additionally module of the topocentric 
2-D displacement of the stations represented in figures 3 and 4.

Station E (m.) N (m.) Displacement (m.)
49 0.95 -0.17 0.97
175 4..4 -1.54 4.66
206 0.70 -0.01 0.70
546 2.90 -1.68 3.35
550 5.02 -1.51 5.24
551 0.55 -0.33 0.64
795 1.01 0.89 1.35
933 1.50 -0.44 1.56
936 1.84 -0.19 1.85
937 1.21 -0.09 1.21
939 1.03 -0.05 1.03
940 1.62 -0.08 1.62

Table 3. Maximum, minimum, mean and typical deviation of the results of the 
temporal series E and N and 2-D displacement, according to D=√(E2+N2 ) of the 

GEONET stations used in the study fixed to a normal distribution. Values are 
represented in meters.

Maximum 
value

Minimum 
value

Mean Typical 
deviation

E coordinate 5.02 0.04 1.48 0.98

N coordinate 1.82 0.00 0.58 0.50

2-D 
displacement

5.24 0.04 1.62 1.05

Figure 5. Normal distribution with frequency histograms of the 2-D displacement 
values, local geodesic coordinate E and N, of the stations comprised in GEONET 

used in the research.

The resulting vectors are used to generate the field of horizontal seismic 
velocities. In the areas closest to the epicenter, values up to 5 meters of horizontal 
displacement are obtained, showing the magnitude of the earthquake. The 
effects of the mainshock were recorded in GNSS equipments in regions far 
away from the epicenter (Wang et al., 2011; Feng & Jónsson, 2012).

The co-seismic displacements are an earthquake-specific parameter 
(Melgar et al., 2013), and decrease as the stations move away from the 
earthquake epicenter. The decreasing can be studied as a function of time, 
measured in seconds from the event, as well as distance (Zhan et al., 2013). 
The attenuation of the earthquake effects is due to the decrease in the amplitude 
of the surface waves generated by the earthquake. In this way it is possible to 
quantify the evolution of the event along the Japanese territory.
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Figure 6. Horizontal velocity field caused by the Tohoku-Oki earthquake, obtained from E and N displacements in local geodetic coordinates.

Figure 7. Co-seismic displacement plotted versus distance to epicenter. Data fitted to a least-squares exponential regression: y=aebx. The results obtained are  
a= 5,8112 and b =-0.3278.
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The surface waves generated at the epicenter of the earthquake dissipate 
as they travel through the study area. This behavior causes the displacements 
recorded at the stations (figure 6) to decrease as the distance from the epicenter 
increases. Plotting the 2D displacement versus distance from the epicenter, data 
show an exponential decay trend (figure 7). Since the measurements made have 
the usual errors associated with satellite positioning techniques (e.g., errors 
due to atmospheric refraction), a least square fit (Deng et al., 2019) is used, 
using an exponential regression. The goal is to find a curve that minimizes the 
discrepancy between the real data and the approximation, in order to obtain a 
model of the attenuation of the co-seismic displacement as a function of the 
epicentral distance.

On the other hand, the time value at which the station detects the event 
is calculated. Due to the precision of the PPP strategy (Szołucha et al., 2018), 
it is necessary to define a value from which it is considered that the station is 
detecting a displacement, so that the errors intrinsic to the positioning strategy 
do not cause the appearance of false positives. For this purpose, the average of 
the positions of the E, N, U coordinates is calculated from the second 19000 
within the day in UTC time, up to the second 20783, instant in which the 
earthquake occurs. It is assumed that for detection to occur, the values of the 
local geodetic coordinates must be greater than 3 times the calculated mean, 
thus ensuring that all positions are already being affected by the displacement 
resulting from the event.

Unlike the exponential behavior shown by the 2D seismic displacement 
versus distance to the earthquake epicenter, the representation of the results 
obtained show a linear trend. Analogously to the previous case, a model that fits 
the observed data with the smallest possible error is sought. Therefore, a least 
squared regression is performed to adjust the results to a straight line, obtaining 
the results shown in Figure 8.

Based on the results obtained in the previous processing, it can be 
observed that the trend of the seismic displacement, caused by the surface 
waves on their way through the main island, is an exponential decay. However, 
the time it takes for the station to start recording the effects of the displacement 
from the beginning of the event, with the rule that the disturbance recorded in 
the time series of the E and N coordinates is three times higher than the average 
of the values prior to the beginning of the event, shows a linear character.

Figure 8. Representation of the epicentral distance of each station versus 
detection time in seconds from the onset of the earthquake together with the line 
obtained in the least squares regression. The model fits a straight line according 
to: y = a x + b, obtaining values of a=2.7179 and b= -33.8587.

In addition to the co-seismic displacement, another determining factor is 
the maximum displacement generated by the earthquake. This value allows us 
to appreciate the magnitude of the surface waves in the area studied and given 
that the surface waves that generate the seismic displacement are the same, it is 
to be expected that the behavior of the maximum displacement will be similar 
in its evolution as the distance to the epicenter increases. To check the results 
obtained, the evolution of this magnitude is studied as the distance to the epicenter 
increases, obtained from the series of E and N coordinates of the network stations.

In order to obtain a better characterization of the event and its evolution, 
a new time parameter is defined. Once selected the instant in which the station 
is sensitive to the earthquake, the time value is calculated for all station as well 
as its maximum displacement values. Again, since these are the same waves, as 
the distance to the epicenter increases, a similar behavior is expected. The time 
value in which each station records the maximum displacement is calculated, 
measured from the moment in which it has been defined that the earthquake is 
detected (i.e., 3 times the mean value of the local geodetic coordinates) until the 
instant in which the maximum displacement value is reached.

Figure 8. Representation of the epicentral distance of each station versus detection time in seconds from the onset of the earthquake together with the line obtained in the 
least squares regression. The model fits a straight line according to: y = a x + b, obtaining values of a=2.7179 and b= -33.8587.

Following the previous methodology, it is again observed that the 
displacement undergoes a decay as the station moves away from the earthquake 
epicenter, following a decreasing exponential pattern similar to when the 
co-seismic displacement was studied. In the same way, the evolution of the 
calculated time from detection to the maximum value shows an increase with 

the epicentral distance with a linear behavior as shown in Figure 9, although this 
trend is less marked than in the case of the time in which the event is recorded 
at the station. The least squared regression is calculated for the case of the 
maximum 2D displacement, fitting to an exponential, whilst time values are 
fitted to a straight (figure 9).
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4. Discussion

In this research a methodology has been designed for the Tohoku-
Oki earthquake using only observations from GPS stations of the GEONET 
network. The PPP strategy is used as it is considered the most appropriate, 
since the magnitude of the earthquake makes the use of other strategies, such as 
Double Differences, implies using reference stations located at a great distance 
from the geodetic network. In addition, given the magnitude of the earthquake 
and the displacements obtained, the PPP strategy offers enough precision to 
carry out the research.

Due to the precisions of the PPP strategy in kinematic mode, it is 
necessary to establish a minimum value, so that the station can be suffering the 

effects of surface waves generated by an earthquake. For this reason, a value 3 
times higher than the mean of the records obtained from the second 19000 to 
the second 20783 is used as a threshold. As the effects of the earthquake are 
detected on the series of each station, the evolution of the surface waves can be 
seen. This wave is responsible for the horizontal displacement in each station, 
getting lower as the epicentral distance is bigger (figures 10 and 11). When 
comparing it to the distance to the epicenter, a decay in the magnitude of the 
displacement is obtained, a logical behavior due to the attenuation the wave 
undergoes as it moves away from the source. The former is independent from 
the fact that the ground effect can cause increases in the displacement.

Figure 9. The upper part represents the epicentral distance of each station versus the maximum 2D displacement together with the exponential function obtained in the least 
squares regression, whose values are: a = 5,9248 and b = - 0.2795. The lower part represents the epicentral distance of each station versus the detection time in seconds of 

the maximum 2D displacement since the detection of the earthquake together with the line obtained in the least squares regression,  
whose values are a = 2.8433 and b = - 201.8993.

Figure 10. Interpolation map representing coseismic displacement as a result of the processing of the data. 2-D coseismic displacement is represented in the left picture. 
North coseismic displacement is represented in top right picture and East coseismic displacement is represented in bottom right picture.
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Results provide, in addition to the evolution of the magnitude of the 
displacement, a view of the detection times (figure 13), establishing a valid 
threshold for both the detection and the maximum of the shock. This allows us 
to see the evolution of the surface waves as they travel through the Japanese 
main island, as well as the variation in time of the effects produced at each 
station. The applied methodology does not offer a prediction of the event, 
since there is no continuous processing of the observations, but it does give an 
approximation of the evolution of the amplitude of the earthquake. In addition, 
the use of final ephemeris for the calculation of the positioning solution prevents 
the use of the results for early warning. However, the methodology could be 
implemented (e.g., in the case of using predicted ultra-fast ephemeris, generated 
by the IGS) as a verification element that an earthquake is indeed occurring, 
or in the use of new techniques such as VADASE (Branzanti et al., 2012), an 
algorithm that can be embedded into the GPS receptor firmware that does not 
require ambiguity solving. The algorithm is able to estimate in near real time 
the velocities and displacements in a global reference frame (ITRF), using high-
rate (1 Hz or more) carrier phase observations and broadcast products (orbits, 
clocks) collected by a stand-alone GNSS receiver, achieving a displacements 
accuracy within 1–2 cm over intervals up to a few minutes (Fratarcangeli, F., et 
al., 2018). The use of three times the mean value of the results obtained during 

Figure 11. Interpolation map representing the maximum displacement recorded by the GPS stations as a result of the processing of the data. 2-D maximum displacement is 
represented in the left picture. North maximum displacement is represented in top right picture and East maximum displacement is represented in bottom right picture

the previous minutes to certificate that the station is suffering the effects of 
surface waves, is enough to absorb the errors generated in the processing.

Another parameter studied is the maximum displacement recorded by 
each station and the time associated with this value. When plotting the data 
versus the epicentral distance, an exponential decreasing pattern is again 
observed, also obtaining a model based on a function of the type =aℯbx, 
representing the attenuation suffered by the earthquake (Lin & Wu, 2010). The 
attenuation resulting from this study is comparable to the values obtained using 
other methodologies (Xu et al., 2019), and the results are useful for comparison 
with prediction models (Gautam et al., 2019).

The displacements obtained in the E and N coordinates show an eastward 
displacement, consistent with the focal mechanism associated with this event 
(Lay, 2018). Despite this evidence, the results obtained do not allow us to recreate 
the model of plate slip originating in the subduction zone, as other techniques 
(Aris et al., 2016; Linuma et al., 2012) that rely on GPS measurements, mainly 
due to the distance separating the epicenter from the nearest stations and the fact 
that data are only available on one side of the rupture zone.

The results obtained in this research are aligned with those obtained using 
non-geodetic methods. In (Feng et al., 2012), InSAR measurements are used to 
calculate an interferogram of the coseismic deformation, in addition to using 

Figure 12. Representation of the earthquake detection times according to the methodology and the time when the maximum displacement is reached. Both values are 
plotted versus the distance separating the station from the epicenter. A greater dispersion is evident as the epicentral distance increases.
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GPS measurements of the GEONET network stations for the correction of the 
orbital errors of the Earth observation satellites by comparing results. As an 
example, station 550 obtains a displacement value of 5.03 meters eastward in 
the E coordinate, consistent with the 5.02 for that same station and coordinate 
using our methodology.

Both, the event detection times according to the methodology, as well 
as the maximum 2D displacement values, show a linear behavior when 
plotted versus the epicentral distance. From the propagation point of view, the 
displacement velocity of the surface waves can be obtained from the straights 
calculated in the least squared regression. The epicentral distance is measured 
in kilometers, and the time in seconds, therefore, the slope of both lines will 
represent the velocity measured in Km/second. The values are very similar 
to each other being 2.7179 Km/s when the sensitivity of the station is set to 
three times the average value of the coordinates corresponding to the 1783 
seconds before the earthquake. In the case of the maximum values, the velocity 
obtained is 2.8433 Km/s, a value lower than that obtained in the implemented 
methodology.

This variation points to a change in the propagation velocity of the 
event, whose reasons may be related to changes in the subsurface produced by 
ruptures derived from the event (Kim et al., 2012), or they may be due to the 
variation of the elastic properties of the lithosphere that movements induced 
by the earthquake can generate (Vidale & Li, 2003; Peng & Ben-Zion, 2006), 
which would justify the greater dispersion of the time values with increasing 
distance from the epicenter as shown in Figure 12.

The values previously obtained approximate the S-wave velocity, 
based only on the use of the GPS station displacements for its calculation. 
On the other hand, only the epicentral distance has been considered when 
making the calculations, without considering the azimuth to the epicenter. 
This fact, added to the local characteristics of each soil typology (Morikawa 
& Fujiwara, 2013), affects the values obtained, so they are approximations 
that represent the average propagation velocity of the rupture, and similar to 
those calculated with other methodologies (Zhang et al., 2012), such as those 
based on the analysis of the distortions recorded in the ionosphere (Astafyeva 
et al., 2013).

5. Conclusions

This paper presents a methodology to study the 2011 Tohoku-Oki 
earthquake based only on GEONET network GPS stations observations. PPP 
strategy has been used for the processing of the geodetic network data, using the 
Gipsy-Oasis software in its version 6.1. The methodology followed is based on 
the calculation of the time series of the local geodetic coordinates of 93 stations 
located in the central area of Japan. From these series, different parameters are 
calculated. First, the 2D co-seismic displacement is calculated, representing 
the displacement vectors in Figure 6. These displacement values are plotted 
versus the epicentral distance, showing a decreasing behavior when moving 
away from the epicenter, fixing it to an exponential model by a least square 
regression. The function obtained is used as a law of attenuation of the event.

Next, the moment at which stations detect the earthquake is calculated, 
when the E and N series deviate more than three times the mean calculated for 
the moments before the earthquake occurs. The value of 3 times the mean is 
used to avoid the limits in the precision of the chosen strategy for the process 
(i.e., PPP or Precise Point Positioning) generate false positives. The time values 
are plotted versus the epicentral distance showing a linear behavior, with the 
detection time increasing with the epicentral distance. What motivates the 
movement of the stations is the surface wave derived from the earthquake or 
S-wave, therefore the time records allow to calculate the propagation velocity 
of the wave, calculated as the slope of the straight line obtained after linear least 
square regression.

Then the values of maximum displacement are calculated, and the time 
from the beginning of the earthquake they are reached. The same procedure is 
followed as with the co-seismic displacement and the instant of detection. An 
exponential behavior is obtained when representing each value versus the 
epicentral distance, in the case of the maximum of the E and N coordinates, and a 
linear behavior in the case of the time it takes to reach these maxima. Therefore, 
with the methodology used it is concluded that the displacements derived from the 
earthquake decrease with the distance to the epicenter according to an exponential 
relationship, while the time it takes for the effects of the event to be registered by 
the stations increases with the distance to the epicenter in a linear trend.

Figure 13. Interpolation map representing the detection time of the event using the methodology implemented in this paper (left picture) and the time when the maximum 
displacement occurs.
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Time parameters are also calculated setting two main cases: time 
detection of the event and moment of the maximum displacement. Results for 
the first case are obtained after applying the methodology implemented in this 
paper. For the maximum displacement time series are analyzed looking for the 
peak both in E and N coordinate.

Finally, it should be noted that the results obtained can be used as a first 
approximation for the study of an earthquake, especially of a sufficiently large 
magnitude so that the displacements generated are much larger than the errors 
generated by the processing strategy. We found that the PPP accuracy limited 
us in the way of detecting the event. The presence of values within the E and 
N geodetic time series higher enough for being considered bigger than the 
threshold value, but lower for being considered outliers, difficult the detection 
of the event. With a view to improving the methodology, it is hoped that the 
introduction of a weighting of the results, when calculating the least square 
regressions, based on the direction of propagation, will lead to an improvement 
that will make it possible to refine the attenuation law obtained.

We propose the implementation of the methodology in a less dense net. 
GEONET is a very rare exception, since there is no other geodetic net like 
it. To validate the methodology greater distances between stations would be 
needed, as well as a fewer number of stations. On the other hand, we used 
final ephemerides for the processing of the RINEX files. In order to use this 
methodology in support of earthquake early warning systems (Hoshiba, M. 
et al., 2011), the use of IGS ultra-rapid predicted ephemerides is proposed, as 
well as the automatic access to GPS data for their processing. By doing so, 
we approximate to near real time, with the limitations related to data transfer 
and process burden. Taking this into account, a new issue arouses: isolated 
areas with no GPRS nor 3g or 4g coverage. This problem could be mitigated 
by implementing satellite communications, with the increase of costs that it 
implies.
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