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Abstract

Linear models are some of the most straightforward and commonly used
modelling approaches. Consider modelling approximately monotonic re-
sponse data arising from a time-related process. If one has knowledge as
to when the process began or ended, then one may be able to leverage addi-
tional assumed data to reduce prediction error. This assumed data, referred
to as the �anchor�, is treated as an additional data-point generated at either
the beginning or end of the process. The response value of the anchor is equal
to an intelligently selected value of the response (such as the upper bound,
lower bound, or 99th percentile of the response, as appropriate). The anchor
reduces the variance of prediction at the cost of a possible increase in predic-
tion bias, resulting in a potentially reduced overall mean-square prediction
error. This can be extremely e�ective when few individual data-points are
available, allowing one to make linear predictions using as little as a single
observed data-point. We develop the mathematics showing the conditions
under which an anchor can improve predictions, and also demonstrate using
this approach to reduce prediction error when modelling the disease progres-
sion of patients with amyotrophic lateral sclerosis.

Key words: Anchor; Amyotrophic lateral sclerosis; Biased regression; Lin-
ear models; Ordinary least squares.

Resumen

Modelos lineales son los modelos más fáciles de usar y comunes en mode-
lamiento. Si se considera el modelamiento de una respuesta aprosimada-
mente monótona que surge de un proceso relacionado al tiempo y se sabe
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cuándo el proceso inició o terminó, es posible asumir datos adicionales como
palanca para reducir el error de predicción. Estos datos adicionales son lla-
mados de �anclaje� y son datos generados antes del inicion o después del �nal
del proceso. El valor de respuesta del anclaje es igual a un valor de respuesta
escogido de manera inteligente (como por ejemplo la cota superior, iferior o
el percentil 99, según conveniencia). Este anclaje reduce la varianza de la
predicción a costo de un posible sesgo en la misma, lo cual resulta en una
reducción potencial del error medio de predicción. Lo anterior puede ser
extremadamente efectivo cuando haypocos datos individuales, permitiendo
hacer predicciones con muy pocos datos. En este trabajo presentamos en de-
sarrollo matemático demostrando las condiciones bajo las cuales el anclaje
puede mejorar predicciones y también demostramos una reducción del error
de predicción aplicando el método a la modelación de progresión de enfer-
medad en pacientes con esclerosis lateral amiotró�ca.

Palabras clave: Anclaje; esclerosis lateral amiotró�ca; modelos lineales;
mínimos cuadrados ordinarios; regresión sesgada.

1. Introduction

Prediction has always been an important part of statistical modeling. With
the advent of big data and the rise of machine learning, one may think that
researchers have moved beyond prediction via simple linear models. This is not
the case, however, especially in the �eld of medical research: a quick search of
PubMed results in over 1000 publications which utilize linear (but not generalized
linear) models from January 2016 � July 2017. This is because linear models are
usually one of the �rst attempted approaches when analyzing new data, and they
are su�cient surprisingly often. Linear models are simple to calculate, requiring
tiny amounts of computing power compared to some of the more complex machine-
learning algorithms (such as neural networks). Most importantly, linear models
are very straightforward to interpret and explain, a direct contrast to the more
sophisticated �black-box� methods that are dependent on large datasets. The
ability to interpret and understand statistical models, or model intelligibility, is
especially important in the �eld of healthcare (Caruana, Lou, Gehrke, Koch, Sturm
& Elhadad 2015).

Yet linear models have their failings, especially when modelling a bounded
response. Consider attempting to model the disease progression over time of a
patient with amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's dis-
ease. This is measured by the instrument known as the ALS Functional Rating
Scale � Revised, or ALSFRS-R (Cedarbaum, Stambler, Malta, Fuller, Hilt, Thur-
mond & Nakanishi 1999). The ALSFRS-R is always an integer between 0 and 48,
with 48 representing no spread of the disease and 0 being the theoretical maxi-
mal spread of the disease. The progression of the ALSFRS-R tends to be very
linear (Armon, Graves, Moses, Forté, Sepulveda, Darby & Smith 2000, Magnus,
Beck, Giess, Puls, Naumann & Toyka 2002), but because of its bounded nature,
simple linear models have the inherent structural defect of creating predictions
that violate these lower and upper bounds. Many adjustments to this problem
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exist: examples include truncating the prediction to 48 if the prediction is too
large (0 if too small) (Amemiya 1973) or performing a logistic transform on the
data (Lesa�re, Rizopoulos & Tsonaka 2007).

If the goal is prediction, say of the patient's ALSFSR-R at one year, these
adjustments may not perform well when small amounts of observed data exist.
The small number of data-points can result in the variance of the prediction being
very large, producing a large mean-squared-prediction-error (MSPE). Recall the
MSPE is equivalent to the sum of the variance and squared bias of the prediction.
In this paper we consider a simple method to reduce the variability of linear
predictions at the cost of potentially increasing the predictive bias. Biased linear
regression itself is not new (ridge regression (Hoerl & Kennard 2000) is one well-
known example), but we do this in a unique way: by exploiting our knowledge
of when the process we are modelling (e.g. the patient's disease progression) �rst
began.

Tracking the date when a patient �rst began noticing symptoms of ALS (their
disease onset time) is common practice in ALS clinics and trials. From a modelling
perspective, one could use this information in a variety of ways: the most obvious
way is using it as a covariate in the model. Let us try a di�erent approach: if
we were to assume their ALSFRS-R score at roughly the time of their disease
onset, what might their ALSFRS-R be? One could argue that the patient has had
minimal, if any, disease progression at time of disease onset. It seems reasonable
then that one could assume their ALSFRS-R to be 48 (meaning the minimum
possible disease progression) at this time. We could then create a new observation
with ALSFRS-R score of 48 at the time of disease onset, and include that as one
of the observations (data-points) used to build our linear model.

In this paper we consider utilizing knowledge of when a process starts to cre-
ate an assumed data-point, which then can be used to reduce variability of linear
model predictions. We found no previous literature on this technique in our litera-
ture search. We �rst show how the inclusion of this point mathematically reduces
variance component of the MSPE under the assumptions of ordinary least-squares
(OLS) linear regression; then we calculate the bias component it brings to the
MSPE; we deduce the condition under which this approach can reduce the MSPE
in predication combined variance and bias. Afterwards we give an example of uti-
lizing this approach in the context of modeling ALS disease progression, showing
how it improves the MSPE when compared to a linear model lacking the extra
data-point. We show how it is also superior to a logit transform approach. We
stress that this method is a simple to understand, easy to perform, and inexpen-
sive to implement approach. It is our hope that this idea may be utilized by
pragmatic researchers to improve their linear predictions and estimations at very
little additional cost.

Revista Colombiana de Estadística 41 (2018) 137�155



140 Alex G. Karanevich, Jianghua He & Byron J. Gajewski

2. The E�ect of Using an Anchor on the Mean

Square Prediction Error in Simple Linear

Regression

Here we develop the theoretical results that justify the creation and use of an
extra assumed data-point to improve modelling. We shall refer to this data-point
as the �anchor.� Consider n− 1 ordered pairs {(xi, yi)}, i ∈ 1, . . . , n− 1, where yi
is some response corresponding to xi. As per ordinary linear regression (Kutner,
Nachtsheim & Neter 2004), assume that xi and yi have a linear relationship,
meaning that for some constants β0 and β1, yi = β0 +β1xi + εi, with independent
error terms εi ∼ N

(
0, σ2

)
. Furthermore, assume an additional observation referred

to as the �anchor� given by (xn, yn), where yn is some �xed constant in R.

Consider the problem of predicting a new value y0 corresponding to a given
x0, which is typically obtained by using the OLS estimates for β0 and β1, denoted
as a and b. Denote the resultant prediction for y0 which utilizes the �rst n − 1

coordinate pairs by Ŷ
(n−1)
0 = a(n−1) + b(n−1)x0, and the prediction which also

includes the anchor by Ŷ
(n)
0 = a(n) + b(n)x0. Denote the errors between our

prediction and the truth to be e
(n−1)
0 = y0 − Ŷ (n−1)

0 and e
(n)
0 = y0 − Ŷ (n)

0 . Recall

that the variance of e
(n−1)
0 (which was built from n − 1 ordered pairs of data in

standard OLS regression) is equivalent to:

V ar
(
e
(n−1)
0

)
= V ar

(
y0 − Ŷ (n−1)

0

)
= σ2

(
1 +

1

n− 1
+

(
x̄(n−1) − x0

)2∑n−1
i=1

(
xi − x̄(n−1)

)2
)

where V ar
(
e
(n)
0

)
= V ar

(
y0 − Ŷ (n)

0

)
represents the variance of the prediction er-

ror obtained from utilizing all n datapoints (meaning we include the anchor).

We �rst show that V ar
(
e
(n)
0

)
≤ V ar

(
e
(n−1)
0

)
, meaning any choice of anchor

will decrease the variance component of the MSPE. We then derive an upper bound
for the bias of the anchor such that the MSPE will decrease; in other words, how
far away from the �true� line can the anchor be before it makes the MSPE worse.

Without loss of generality, we will assume the following for the observed data:

Assume that x1, . . . , xn−1 have been normalized such that x̄(n−1) =
∑n−1

i=1 xi

n−1 =

0 and
√∑n−1

i=1 x
2
i = 1. Any collection of (xi, yi) can be linearly transformed in the

x-coordinate by subtracting from each xi the mean of the x's and dividing by the
Euclidean norm to achieve this normalization. Explicitly, each xj is transformed

by applying g (xj) =
xj − x̄(n−1)√∑n−1

i=1

(
xi − x̄(n−1)

)2 . It is interesting to point out that

this transformation has no impact on the OLS estimators for σ2.
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Then the following hold:

SSX(n−1) =

n−1∑
i=1

x2i = 1,

x̄(n) =
xn
n

+
n− 1

n

(
x̄(n−1)

)
=
xn
n
,

SSX(n) =

n−1∑
i=1

x2i + x2n − n
(
x̄(n)

)2
= 1 + x2n −

x2n
n
.

2.1. Utilizing an Anchor Reduces Predictive Variability

Here we show that inclusion of an anchor in an OLS regression will always
reduce the variance of newly predicted responses. Intuitively, it makes sense that
the variance for the slope and intercept estimates will shrink as more points are
included in the OLS regression: consider a simulation where one draws two obser-
vations and obtains the OLS estimates for the slope and intercept as compared to
a simulation where one draws three observations. The latter will have less vari-
ance on the OLS estimates, resulting in less variance on newly predicted responses.
The variance is then reduced even further when one assumes that the additional
observation is an anchor and has a variance of zero.

Theorem 1. For any anchor point (xn, yn), with yn a �xed constant, V ar
(
e
(n)
0

)
≤

V ar
(
e
(n−1)
0

)
.

Proof . Let a, b be the OLS estimated intercept and slope through the points
(x1, y1) , . . . , (xn, yn). In other words, a and b are the regression estimates for

β0 and β1. Since y0 and Ŷ
(n)
0 are independent,Var

(
e
(n)
0

)
= Var

(
y0 − Ŷ (n)

0

)
=

Var (y0) + Var (a+ bx0). Utilizing our assumptions on x1. . .,xn−1, the inequality

Var
(
e
(n)
0

)
≤ Var

(
e
(n−1)
0

)
holds if and only if:

V ar (y0) + V ar (a+ bx0) ≤ V ar
(
e
(n−1)
0

)
= σ2

(
1 +

1

n− 1
+

(
x̄(n−1) − x0

)2
SSX(n−1)

)
.

This can be simpli�ed using our assumptions on x̄(n−1) and SSX(n−1) to obtain

V ar (y0) + V ar (a+ bx0) ≤ σ2

(
1 +

1

n− 1
+

(0− x0)
2

1

)
,

which simpli�es as follows using properties of variance:

σ2 + V ar (a) + x20V ar (b) + 2x0Cov (a, b) ≤ σ2

(
1 +

1

n− 1
+ x20

)
,
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V ar (a) + x20V ar (b) + 2x0Cov (a, b) ≤ σ2

(
1

n− 1
+ x20

)
.

We next consider the individual terms V ar (a) , V ar (b) , and Cov (a, b). For
convenience SSX denotes SSX(n) and x̄ denotes x̄(n).

Part 1: variance of slope

V ar (b) = V ar

(
n∑

i=1

(xi − x̄)

SSX
yi

)
=

n∑
i=1

(xi − x̄)

SSX2

2

V ar(yi).

Recall V ar (yi) = σ2 if i ≤ n−1 and V ar (yn) = 0 since yn is a constant. Thus
the nth term of the summation is zero and we can write V ar (b) as:

V ar (b) =
σ2

SSX2

n−1∑
i=1

(xi − x̄)
2

=
σ2

SSX2

n−1∑
i=1

(
x2i + x̄2 − 2xix̄

)
.

Utilizing the assumption that
∑n−1

i=1

(
x2i
)

= 1 and that
∑n−1

i=1 (xi) = 0,

V ar (b) =
σ2

SSX2

(
1 + (n− 1) x̄2

)
.

Or equivalently (multiply top and bottom by n)

V ar (b) = σ2 n2 + nx2n − x2n
(nx2n + n− x2n)

2 .

Part 2: variance of intercept

Since V ar (yn) = 0 and V ar (yi) = σ2 for i ∈ 1, . . . , n− 1, we use properties of
the variance to �nd:

V ar (a) = V ar

(
n∑

i=1

(
1

n
− x̄ (xi − x̄)

SSX

)
yi

)
= σ2

n−1∑
i=1

(
1

n
− x̄ (xi − x̄)

SSX

)2

= σ2
n−1∑
i=1

(
1

n2
+
x̄2(xi − x̄)

2

SSX2
− 2

x̄ (xi − x̄)

nSSX

)
.

Distributing the summation to each term results in

V ar (a) = σ2

(
n− 1

n2
+
x̄2
(
1 + (n− 1) x̄2

)
SSX2

+ 2
(n− 1)x̄

2

nSSX

)
,

which, after multiplying as needed to get a common denominator, is equivalent to

V ar (a) = σ2nx
4
n + 2nx2n + n− x4n − x2n − 1

(nx2n + n− x2n)
2 .
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Part 3: covariance of intercept and slope

Consider Cov (a, b). We use the property that Cov (
∑
ciyi,

∑
diyi) = σ2

∑
(cidi)

and the fact that any covariance or variance term involving yn is 0, since yn is a
constant.

Cov (a, b) = Cov

(
n∑

i=1

(
1

n
− x̄ (xi − x̄)

SSX

)
yi,

n∑
i=1

(xi − x̄)

SSX
yi

)

= Cov

(
n−1∑
i=1

(
1

n
− x̄ (xi − x̄)

SSX

)
yi,

n−1∑
i=1

(xi − x̄)

SSX
yi

)

= σ2
n−1∑
i=1

(
1

n
− x̄ (xi − x̄)

SSX

)(
(xi − x̄)

SSX

)

=
σ2

SSX

n−1∑
i=1

(
xi − x̄
n
− x̄(xi − x̄)

2

SSX

)

=
−σ2

SSX

(
n− 1

n
(x̄) +

x̄

SSX

(
1 + (n− 1) x̄2

) )
Or equivalently (after multiplying as needed to get a common denominator)

Cov (a, b) = −σ2xn
(
nx2n + 2n− x2n − 1

)
(nx2n + n− x2n)

2 .

Part 4: proving the inequality V ar
(
e
(n)
0

)
≤ V ar

(
e
(n−1)
0

)
Recall, V ar

(
e
(n)
0

)
≤ V ar

(
e
(n−1)
0

)
is equivalent to the following:

V ar (a) + x20V ar (b) + 2x0Cov (a, b) ≤ σ2

(
1

n− 1
+ x20

)
.

Substituting the previously derived terms on the left hand side results in a
statement which is trivially true if σ2 = 0. Otherwise, this statement is equivalent
to

0 ≤ x20

(
1− n+ nx2n − x2n

(nx2n + n− x2n)
2

)
+ x0

(
2
xn
(
nx2n + 2n− x2n − 1

)
(nx2n + n− x2n)

2

)

+

(
1

n− 1
− nx4n + 2nx2n + n− x4n − x2n − 1

(nx2n + n− x2n)
2

)
.

The right hand side of the inequality is quadratic in x20 with form g (x0) =
Ax20 + Bx0 + C. Note the coe�cients A,B,C simplify to single terms in the
following way:

A =
(n− 1)x2n

(
nx2n + 2n− x2n − 1

)
(nx2n + n− x2n)

2 ,
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B =
2xn

(
nx2n + 2n− x2n − 1

)
(nx2n + n− x2n)

2 ,

C =

(
nx2n + 2n− x2n − 1

)
(n− 1) (nx2n + n− x2n)

2 .

Since A > 0 for n > 2, then g(x0) is an upward-facing parabola. Also, the
discriminant, given by B2 − 4AC is equal to zero:

B2 − 4AC =
4x2n

(
nx2n + 2n− x2n − 1

)2
(nx2n + n− x2n)

4

− 4
(n− 1)x2n

(
nx2n + 2n− x2n − 1

)
(nx2n + n− x2n)

2

(
nx2n + 2n− x2n − 1

)
(n− 1) (nx2n + n− x2n)

2

=
4x2n

(
nx2n + 2n− x2n − 1

)2
(nx2n + n− x2n)

4 −
4x2n

(
nx2n + 2n− x2n − 1

)2
(nx2n + n− x2n)

4 = 0,

meaning there is exactly one root in g(x0). Therefore, it must be true that

g (x0) ≥ 0 and V ar
(
Ŷ

(n)
0

)
≤ V ar

(
Ŷ

(n−1)
0

)
as desired.

Thus we see that any choice of anchor will necessarily result in a reduction
in the variance of the prediction of y0, which is equivalent to a reduction of the
variance component of the MSPE. However, we still need to consider the bias.
Recall that the typical OLS estimators for slope and intercept are unbiased, but
this is not necessarily true when including an anchor. We next consider how
much bias will be introduced by an anchor to the estimators for the slope and
intercept, and the e�ect this has on the MSPE (compared to the MSPE that does
not include an anchor). It will be shown that any choice of an anchor (xn, yn)
such that yn 6= β0 + β1xn will introduce bias to the model. Note that the bias is
a direct function of β0 and β1, which are rarely known in practice. Again, let x̄
denote x̄(n) and SSX denote SSX(n) =

∑n
i=1 x

2
i .

2.2. Predictive Bias Caused by Utilizing an Anchor

There is no such thing a free lunch, and while using an anchor brings the bene�t
of predictive variance reduction, it can potentially inject bias into the predictions.
Here we quantify this bias in terms of the true regression slope (Theorem 2) and

intercept (Theorem 3). These biases propagate in to the prediction of Ŷ
(n)
0 directly.

Theorem 2. Using anchor point (xn, yn) results in biasing the slope by

E (b− β1) =
(n− 1)xn (yn − β0) + β1n

nSSX
− β1.

This result shows that an anchor will almost always bias the estimate for the
slope, however we will show that no bias is added when the anchor lies directly on
the true regression line as a corollary.
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Proof . Recall yi = β0 + β1xi + εi and that the OLS estimate for β1, denoted by
b, is given by

b =

∑n
i=1 (xi − x̄) yi

SSX
=

∑n
i=1

(
xi − xn

n

)
yi

SSX
.

We �rst derive E(b):

E (b) = E

(∑n
i=1

(
xi − xn

n

)
yi

SSX

)

= E

(∑n−1
i=1

(
xi − xn

n

)
yi

SSX
+

(
xn − xn

n

)
yn

SSX

)
.

Recall that yn is a nonrandom constant, and hence E (yn) = yn. Then we can
partition the expectation of the summation:

E (b) =
1

SSX
E

(
n−1∑
i=1

(
xiyi −

yixn
n

))
+

1

SSX

(
xn −

xn
n

)
yn

=
1

SSX
E

(
n−1∑
i=1

{xiyi } − ȳn−1xn
(
n− 1

n

))
+

1

SSX

(
xn −

xn
n

)
yn.

Note that the OLS estimate for β0 when not using the anchor point is given
by a(n−1) = ȳ(n−1) − b(n−1)x̄(n−1) = ȳ(n−1) since x̄(n−1) = 0. Similarly, b(n−1) =∑n−1

i=1 {xiyi}. Since these are the unbiased OLS estimators for β0 and β1 when ig-
noring the anchor point, then it must be that E

(
ȳ(n−1)

)
= β0 and

E
(∑n−1

i=1 {xiyi}
)

= β1. Using these values and the linearity of expectation, we

then have

E(b) =
1

SSX

(
β1 − β0xn

(
n− 1

n

))
+

1

SSX

(
xn −

xn
n

)
yn

=
1

SSX

(
β1 + xnyn − β0xn

(
n− 1

n

)
− xnyn

n

)
=

1

SSX

(
β1 +

(
n− 1

n

)
xnyn − β0xn

(
n− 1

n

))
=

1

SSX

(
β1 + xn

(
n− 1

n

)
(yn − β0)

)
.

Or equivalently

E (b) =
(n− 1)xn (yn − β0) + β1n

nSSX
,

which means the bias of b is given by

E (b− β1) =
(n− 1)xn (yn − β0) + β1n

nSSX
− β1.
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We next quantify the bias added to the estimate of the intercept parameter
when using an anchor.

Theorem 3. Using anchor point (xn, yn) results in biasing the intercept by

E (a− β0) =
β0 (n− 1)

(
x2n + 1

)
− β1x2n + yn

nSSX
− β0.

Similarly to Theorem 2, this result shows that an anchor will almost always
bias the estimate for the intercept. Again, this bias is minimized when choosing an
anchor that is closer to being on the true regression line. No bias is added when
the anchor lies directly on the true regression line.

Proof . Recall that the OLS estimate for β0, denoted by a, is given by

a = ȳ(n) − bx̄ = ȳ(n) − bxn
n
.

We �rst calculate E (a) :

E(a) = E
(
ȳ(n)

)
− xn

n
E (b)

=
1

n
E
(

(n− 1) ȳ(n−1) + yn

)
− xn

n
E (b) .

Again, recall that E
(
ȳ(n−1)

)
= β0 and that E (yn) = yn. We derived E(b) in

Theorem 2. Thus:

E (a) =
(n− 1)

n
β0 +

yn
n
− xn
n2SSX

((n− 1)xn (yn − β0) + β1n) ,

which can be reduced to

E (a) =
β0 (n− 1)

(
x2n + 1

)
− β1xn + yn

nSSX
.

Therefore the bias of the intercept is

E (a− β0) =
β0 (n− 1)

(
x2n + 1

)
− β1xn + yn

nSSX
− β0.

With Theorems 2 and 3, we can combine these using the linearity of expected

values to determine the bias when predicting a new response Ŷ
(n)
0 .

Corollary 1. The overall bias induced by using anchor point (xn, yn) is given by

E
(
Ŷ

(n)
0 − y0

)
= E (a+ bx0 − β0 − β1x0)

=
β0 (n− 1)

(
x2n + 1

)
− β1xn + yn

nSSX

− β0 + x0

{
(n− 1)xn (yn − β0) + β1n

nSSX
− β1

}
,
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which can be reduced algebraically to

E
(
Ŷ

(n)
0 − y0

)
=

1 + (n− 1)xnx0
nSSX

(yn − β0 − β1xn).

We next show when no bias is added when using an anchor. As mentioned
previously, this typically happens only when the anchor lies directly on the true
regression line; in other words when the anchor (xn, yn) is such that yn = β0 +
β1xn.

Corollary 2. When using an anchor to predict y0 for any given x0 6= −1
(n−1)xn

,

no bias is introduced by the anchor, meaning E
(
Ŷ

(n)
0

)
= y0, if and only if yn =

β0 + β1xn.

Proof . Recall the overall bias is given by E
(
Ŷ

(n)
0 − y0

)
= 1+(n−1)xnx0

nSSX

(yn − β0 − β1xn). This is zero if and only if either yn − β0 − β1xn = 0 or
1 + (n− 1)xnx0 = 0, which is equivalent to yn = β0 + β1xn or x0 = −1

(n−1)xn
.

Thus the overall bias is zero if and only if the anchor point is on the true regres-
sion line, given that you are not predicting where x0 = −1

(n−1)xn
.

2.3. Using an Anchor to Reduce the Mean Square Predictive

Error

We combine the previous theorems to deduce exactly when using an anchor
will improve the MSPE of predicting a new response. If the variability is reduced
more than the square of the bias is increased, the MSPE will shrink, which is
desired. In Theorem 4 we derive an exact bound for when this occurs.

Theorem 4. Utilizing anchor point (xn, yn) reduces the overall MSPE when the
following inequality holds:(

β0 (n− 1)
(
x2n + 1

)
− β1xn + yn

nSSX
− β0 + x0

{
(n− 1)xn (yn − β0) + β1n

nSSX
− β1

})2

≤

x20

(
(n− 1)x2n

(
nx2n + 2n− x2n − 1

)
n2SSX2

)
+ x0

(
2xn

(
nx2n + 2n− x2n − 1

)
n2SSX2

)

+

(
nx2n + 2n− x2n − 1

)
(n− 1)n2SSX2

.

Note that this bound is a function of the true regression slope and intercept,
β1 and β0. In practice, these are rarely known, which makes this bound di�cult
to use as a decision rule for including the use of an anchor (at least, outside of a
simulation).

Proof . Consider the following inequality

MSPE(n) ≤MSPE(n−1).
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This is equivalent to

Bias2
(
e
(n)
0

)
+ V ar

(
e
(n)
0

)
≤ Bias2

(
e
(n−1)
0

)
+ V ar

(
e
(n−1)
0

)

Bias2
(
e
(n)
0

)
≤ V ar

(
e
(n−1)
0

)
− V ar

(
e
(n)
0

)
.

But recall Bias2
(
e
(n−1)
0

)
= 0, and that V ar

(
e
(n−1)
0

)
= σ2

(
1 + 1

n−1 + x20

)
.

The remaining pieces, Bias2
(
e
(n)
0

)
and V ar

(
e
(n)
0

)
, were derived in Theorem 2

and Theorem 3, and substituting them in to this inequality results in the formula
given in the statement of Theorem 4.

Thus we see that any choice of anchor point will reduce the variance of predic-
tion, but will almost always increase the bias of the prediction depending on how
far away the anchor point is from the �true� regression line. To see why the bias
increases based on how far the anchor is from the true regression line, observe that
the square of the total bias is quadratic in yn, which must have exactly one root at
the vertex. Given that x0 6= −1

(n−1)xn
, this root occurs only when yn = β0 + β1xn.

Because it is quadratic in yn, the square of the bias will increase as (xn, yn) moves
further away from the true regression line. Therefore, using an anchor may be
bene�cial or not, depending on how much bias is added.

The bound calculated in Theorem 4 could potentially be used as a decision
rule for determining if using an anchor is bene�cial or not. Unfortunately, one
needs to know the true values of β0 and β1 in order to use Theorem 4's result.
In practice, one tends to not know the true regression parameters (which would
result in no need of including an anchor), although with su�ciently informed prior
knowledge, precise estimates may exist. Thus, when deciding whether to use an
anchor or not, we suggest comparing the anchor model to a standard model by
validating the model in some way (perhaps via a cross-validation approach). We
show an example of this in Section 3.

Before moving to the application section, we note that many of the ideas
in this paper have Bayesian connections. For example, consider performing a
Bayesian analysis of classical regression. When utilizing the standard noninforma-
tive prior distribution, the posterior mean estimates for the slope and intercept
terms (and their standard errors) are equivalent to those obtained under frequen-
tist OLS (Gelman 2014). It follows that Theorems 1-4 still hold under the Bayesian
paradigm, meaning that an anchor can be utilized to reduce the variance of pos-
terior predictions.

3. Application to ALS Prediction

We next consider using an anchor to improve linear models that pertain to pre-
dicting disease progression in patients with ALS. Note that the theory developed
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in part (2) applies to a single OLS regression (prediction for the individual). The
following example expands on this by showing how utilizing an anchor can improve
the average prediction error across several OLS regressions (prediction for each of
several individuals).

Our data comes from the Pooled Resource Open-Access ALS Clinical Tri-
als (PRO-ACT) database (Atassi, Berry, Shui, Zach, Sherman, Sinani, Walker,
Katsovskiy, Schoenfeld, Cudkowicz & Leitner 2014). In 2011, Prize4Life, in col-
laboration with the Northeast ALS Consortium, and with funding from the ALS
Therapy Alliance, formed the PRO-ACT Consortium. The data available in the
PRO-ACT Database has been volunteered by PRO-ACT Consortium members
(https://nctu.partners.org/PRO-ACT/).

Recall ALS disease progression is tracked by the ALSFRS-R (see Section 1),
our outcome variable, which is an integer value between 0 and 48, where 48 rep-
resents the minimal amount of disease progression and 0 represents the maximal
progression. For each patient, we model the ALSFRS-R versus time (in days).
Speci�cally, time is measured in days from trial baseline, meaning x = 0 corre-
sponds to the beginning of the trial and x = 365 corresponds to the 365th day after
the trial began. On this scale, a patient's disease onset time is typically negative,
as it happened before the trial began. We required patients to have the following:
(1) at least two recorded ALSFRS-R scores before 3 months, for model building
purposes; (2) non-missing value for time of disease onset; (3) at least one year be-
tween the baseline and last ALSFRS-R score for MSPE-validation purposes. This
resulted in 1606 patients, with an average ± standard error of 12±4.54 time-points
per patient (and 3± 0.96 visits in the �rst three months).

Note that we are now considering data on several distinct patients, each with
their own ALSFRS-R trajectory. To demonstrate how utilizing the anchor-point
improves OLS regression, we will simply model each patient independently with (1)
a standard OLS regression model and (2) with an OLS regression model utilizing
an anchor. Note that the ALSFRS-R follows a fairly linear decline, with wildly
varying between-patient progression rates, justifying using linear models (Figure
1). The assumed data-point, or anchor, utilized in the anchor model comes from
assuming minimal disease progression at the time of disease onset. In other words,
each patient's data is augmented with the additional data point given by the
ordered pair (xonset, 48), since 48 is the ALSFRS-R corresponding to minimal
progression.

Our validation method is as follows: we will compare the standard model
versus the anchor model by comparing their ability to predict each patient k′s
�rst ALSFRS-R score after 365 days (1 year), observed at time xk,0, using only
ALSFRS-R scores measured before 92 days (3 months). Speci�cally for both mod-
els we calculate (for the 1606 patients)

√
MSPE =

√√√√∑1606
k=1

(
Ŷk − Yk

)2
1606

,
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Figure 1: For nine randomly selected subjects, we plotted their ALSFRS-R versus time.
The leftmost black square is the anchor, the rightmost square is the observed
value Yk, and the gray triangles are observed scores. The dashed black lines
denote days 0 and 92 of the trial, meaning observations between the two
dashed lines were used for model �tting.

where Ŷk is the predicted ALSFRS-R score for patient k at time xk,0 and Yk is the
true ALSFRS-R score at time xk,0. Because we know the ALSFRS-R is bounded
between 0 and 48, any model prediction that falls outside these bounds will be
truncated to the closest boundary value before evaluating the MSPE. To assist
in visualizing this data, Figure 1 shows the progression of the ALSFRS-R versus
time for nine subjects (simple random sample without replacement).

The anchor model results in slightly more biased predictions compared to those
of the standard model, as expected. However, as demonstrated in the methods
section, the variance of these errors is much smaller for the anchor model (Figure
2). The resulting root MSPE of the anchor model is 7.8 while the standard model's
MSPE is 13.0: we observe a large drop in prediction error when including the
anchor.
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Figure 2: The raw prediction error for the anchor and standard model. The models'

mean error as measured by Ŷk−Yk was 3.1 and 2.1 respectively, with standard
deviations of 7.1 and 12.7.

It can be shown that for some patients, the prediction from the standard model
is closer to the truth than the prediction from the anchor model. Perhaps we should
only use the anchor model when the increase in bias is negligible? We could explore
this by taking the di�erence between the prediction from the anchor model Ŷ (a)

and the standard model Ŷ (s); if this di�erence is su�ciently small in magnitude
then the increase in bias from using the anchor model is negligible on average.

In other words, for each patient consider calculating Tk = Ŷ
(a)
k − Ŷ (s)

k , and then
de�ning the prediction for patient k as

Ŷk =

{
Ŷ

(a)
k if |Tk| ≤ Γ

Ŷ
(s)
k otherwise

for some constant Γ. Figure 3 shows how this changes the MSPE for various values

of Γ, as well the result from changing the rule to be Ŷk = Ŷ
(a)
k if |Tk| ≥ Γ instead

(meaning choose the anchor model if the di�erence in the model predictions is
large). From Figure 3 we see that naively using the anchor model for all patients
outperforms any of the Γ and Tk decision-rule hybrids for this dataset.

Finally, we compare the anchor model to that of a logit transform model.
The logit transform is a model which is more advanced, yet also more di�cult to
calculate and interpret. The logit transform model was chosen because it is one
of the easier-to-understand models for modelling bounded data. We �t the logit
transform model by taking each ALSFRS-R score, dividing it by its maximum
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of 48, and �tting the resultant data (which is bounded between 0 and 1) with a
regression model. In other words, for a given patient we �t the following model:
logit

(
yi

48

)
= β0 +β1xi + εij , where εij are independent errors that follow N(0, σ2),

β0 and β1 are the intercept and slope parameters, xi is the time-point associated
with ALSFRS-R score yi. The MSPE of this model comes to be 14.65, signi�cantly
higher than the MSPE for either the standard OLS model (12.95) or the anchor
model (7.78).
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Γ

M
S

P
E

Anchor if Tk ≥ Γ
Anchor if Tk ≤ Γ

Standard model
Anchor model

Γ and Tk decision rule

Figure 3: Shows the resulting MSPE for various cuto�s of Γ. Note that since the MSPE

is bounded below by the anchor model (
√
MSPE = 7.78), this shows that the

anchor model is uniformly better than the linear model (
√
MSPE = 12.95)

for this data.

4. Discussion

In this paper, we discussed a simple and computationally inexpensive technique
that may improve the predictive power in linear models. This method consists of
creating an additional assumed data-point, referred to as an anchor, and including
it in the OLS regression. This is di�erent than �xed-intercept regression, as it
allows the more weight to be put on the data with respect to parameter estimation.
It has been shown in this paper that including an anchor theoretically decreases
prediction variance at the cost of potentially increased bias. We demonstrated how
using an anchor can improve linear predictions from modelling disease progression
in ALS patients.
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Fitting the anchor model can be performed as easily and e�ciently as a stan-
dard OLS regression, yet has the potential to be a much stronger predictive model.
Furthermore, the interpretations of the anchor model's parameters remain largely
unchanged from that of OLS regression, which is a huge advantage over other mod-
els: the interpretability of the parameters is arguably one of the most attractive
parts of linear models.

We imagine that utilizing an anchor in the way we have demonstrated will be
of particular use when modelling a bounded linear process when one can obtain
a measure of when the process �rst began and/or ended. The bounds give a
justi�cation for choosing the y-value of the anchor; without bounds it may be
di�cult to justify a value without �rst looking at the data, potentially leading to
over�tting. However, as long as monotonicity approximately holds, one could still
use something such as the 99th percentile of the response in lieu if no bound exists.

While the results in this paper are done under the assumptions of frequentist
OLS regression, it is in no way limited to this. The idea of utilizing this addi-
tional data-point can easily extend to other families of models such as generalized
linear models, hierarchical models, and mixed models. For example, one can dra-
matically improve the model performance in the ALS example by switching from
independent linear regressions for each patient to a Bayesian hierarchical model;
this allows patients to borrow information from one another and results in im-
proved estimators due to shrinkage (Morris & Lysy 2012). This model is improved
even further when it becomes a Bayesian hierarchical model that utilizes an an-
chor for each patient (Karanevich, Statland, Gajewski & He 2018). While less
straightforward than OLS regression, one could also include additional random
error associated with the anchor (either on the xn, yn, or both) in their model to
allow for more �exibility to the approach.

Deciding when to include an anchor for modelling is not straightforward. If
the goal is estimation, the induced bias may not be worth the reduced variability
in estimates. While we developed a theoretical bound for when an anchor will
improve the MSPE, it depends on having theoretical knowledge of the underlying
linear process, which is rarely possible in practice. Thus we recommend using
some sort of prediction validation (such as cross-validation) to compare utilizing
an anchor versus a more standard approach. The validation scheme used in our
ALS example is one way of doing this. Other models might bene�t more from
cross-validation, which builds a model on a training set and tests the model on a
withheld validation set. Because some sort of validation is good standard practice
when evaluating predictive models, we feel that this is a very small price to pay
for a potentially dramatic improvement in predictive error.
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