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Abstract
We consider a parametric joint modelling of longitudinal measurements

and survival times, motivated by a study conducted at the Heart Institute
(Incor), São Paulo, Brazil, with the objective of evaluating the impact of
B-type Natriuretic Peptide (BNP) collected at different instants on the sur-
vival of patients with Congestive Heart Failure (CHF). We employ a linear
mixed model for the longitudinal response and a Birnbaum-Saunders model
for the survival times, allowing the inclusion of subjects without longitudinal
observations. We derive maximum likelihood estimators of the joint model
parameters and conduct a simulation study to compare the true survival
probabilities with dynamic predictions obtained from the fit of the proposed
joint model and to evaluate the performance of the method for estimating
the model parameters. The proposed joint model is applied to the cohort of
1609 patients with CHF, of which 1080 have no BNP measurements. The
parameter estimates and their standard errors obtained via: i) the tradi-
tional approach, where only individuals with at least one measurement of
the longitudinal response are included and ii) the proposed approach, which
includes survival information from all individuals, are compared with those
obtained via marginal (longitudinal and survival) models.
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Resumen

Consideramos una modelación conjunta paramétrica de mediciones lon-
gitudinales y tiempos de supervivencia, motivados por un estudio realizado
en el Instituto do Coração (Incor), São Paulo, Brasil, con el objetivo de
evaluar el impacto del Péptido Natriurético tipo B (BNP) recolectado en
diferentes instantes, sobre la supervivencia de pacientes con Insuficiencia
Cardíaca Congestiva (ICC). Empleamos un modelo lineal de efectos mix-
tos para la respuesta longitudinal y un modelo Birnbaum-Saunders para los
tiempos de supervivencia, permitiendo la inclusión de sujetos sin observa-
ciones longitudinales. Obtenemos los estimadores de máxima verosimilitud
de los parámetros del modelo conjunto y realizamos un estudio de simu-
lación para comparar las probabilidades de supervivencia verdaderas con las
predicciones dinámicas obtenidas al ajustar el modelo conjunto propuesto
y para evaluar el desempeño del método para estimar los parámetros del
modelo. El modelo conjunto propuesto se aplica a la cohorte de 1609 pa-
cientes con ICC, de los cuales 1080 no tienen mediciones de BNP. Las esti-
maciones de los parámetros y sus errores estándar obtenidos por medio de:
i) el enfoque tradicional, donde únicamente se incluyen individuos con al
menos una medición de la respuesta longitudinal y ii) el enfoque propuesto,
que incluye la información de supervivencia de todos los individuos; se com-
paran con los obtenidos por medio de los modelos marginales (longitudinal
y de supervivencia).

Palabras clave: Medidas repetidas; Modelo de supervivencia paramétrico;
Modelo lineal de efectos mixtos.

1. Introduction

In many studies, repeated measurements of one or more variables (longitudinal
responses), time until the occurrence of one or more events (survival responses)
and additional observations on explanatory variables are collected on a set of
subjects in order to characterize their relationship. This is the case of a study
conducted at the Heart Institute (Incor), São Paulo, Brazil, where data related to:
i) longitudinal measurements of B-type Natriuretic Peptide (BNP) levels (pg/mL),
ii) the time between admission to the study and the date of death or censoring (in
months), as well as iii) the values of basal covariates, were collected on patients
with Congestive Heart Failure (CHF) to identify prognostic factors for the time
to death.

In practical situations, data with this nature are often analyzed consider-
ing the longitudinal and survival responses separately as noted in Rizopoulos
(2010), among others. However, there are two scenarios in which it is more
appropriate to perform a joint modelling: when interest is to analyze the be-
havior of the longitudinal response, considering a possible dependence of time
to dropout, potentially informative, treated as the survival response (Hogan &
Laird 1997a, Hogan & Laird 1997b, Diggle, Farewell & Henderson 2007) and
when interest is to analyze the time-to-event considering the effect of the lon-
gitudinal response measurements (Wulfsohn & Tsiatis 1997, Henderson, Diggle &
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Dobson 2000, Rizopoulos 2010, Crowther, Abrams & Lambert 2012). Different au-
thors suggest that in these cases joint modelling can facilitate the understanding
of the mechanisms underlying the phenomenon under investigation and can im-
prove the properties of parameter estimators, being an appealing alternative that
has attracted the attention of recent research (Tsiatis & Davidian 2004, Yu, Law,
Taylor & Sandler 2004, Diggle, Sousa & Chetwynd 2008, Rizopoulos, Verbeke &
Molenberghs 2010, Wu, Liu, Yi & Huang 2012, Rizopoulos 2012b, Gould, Boye,
Crowther, Ibrahim, Quartey, Micallef & Bois 2015).

A naive approach when the interest lies exclusively in the survival compo-
nent, is to consider the longitudinal response as a time-dependent covariate in the
Cox model, which requires that the time-dependent covariate values be known
exactly at each instant of failure and further, that the time-dependent covariates
are external, as decribed by Kalbfleisch & Prentice (2002). This approach may
not be appropriate because the longitudinal observations are usually measured
intermittently and subject to errors. Additionally, it may be influenced by the
occurrence of the event under investigation (Hu, Tsiatis & Davidian 1998, Greene
& Cai 2004, Rizopoulos 2010). An alternative is the two-stage approach, where
a model for longitudinal response is initially fitted to the data and, using the
values of the first stage estimated individual longitudinal, are subsequently incor-
porated as a time-dependent covariate in the Cox model (Tsiatis, DeGruttola &
Wulfsohn 1995, Ye, Lin & Taylor 2008, Albert & Shih 2010). Despite the advantage
of its simple computational implementation, this method has the limitation of not
considering the effect of the survival response on the modelling of the longitudinal
data. Another alternative is to estimate the model parameters by maximizing the
likelihood function corresponding to the joint distribution of longitudinal and sur-
vival responses (Wulfsohn & Tsiatis 1997, Henderson et al. 2000, Hsieh, Tseng &
Wang 2006, Crowther et al. 2012, Rizopoulos 2010, Rizopoulos 2012b). Although
the computational implementation of this approach is more complex, it has the
advantage of using longitudinal and survival data simultaneously in the process of
estimating model parameters. This approach is adopted in this paper.

In this context, most authors consider the Cox model to describe survival times
(see Wulfsohn & Tsiatis 1997, Henderson et al. 2000, Rizopoulos 2010, Rizopou-
los 2012b, among others) although log-normal and Weibull parametric models
have also been considered for such purposes in Schluchter (1992), Pawitan & Self
(1993), DeGruttola & Tu (1994). Linear mixed models are commonly employed
to represent the longitudinal component. The usual methods, however, only use
data for subjects that have at least one measurement of the longitudinal response.
In studies where such measurements are not recorded for some participants, the
corresponding estimates may be biased or less efficient.

Among many alternatives to describe survival times, Birnbaum-Saunders dis-
tributions seem appropriate in the context of CHF because in chronic cardiac
diseases, a cumulative damage caused by several risk factors may lead to a degra-
dation and to a consequent failure, an inherent feature of such models, as described
in Galea, Leiva & Paula (2004), Leiva, Barros, Paula & Galea (2007), Barros, Paula
& Leiva (2008), Balakrishnan, Leiva, Sanhueza & Vilca (2009) or Leiva, Athayde,
Azevedo & Marchant (2011). With this in mind, we propose a joint modelling
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methodology that considers a linear mixed model to describe the longitudinal re-
sponse and a Birnbaum-Saunders model to describe the survival response, allowing
the inclusion of the survival data of subjects without longitudinal observations.

In Section 2, we present the model and discuss inferential aspects including the
dynamic prediction of the survival probability based on the available data up to
the instant when we want to make the prediction. In Section 3, we summarize the
results of a simulation study designed to compare the true survival probabilities
with dynamic predictions obtained from the fitted model and to evaluate the
performance of the method for estimating the model parameters. In Section 4 we
analyze the data that motivated our research. We conclude with a discussion and
suggestions for future research in Section 5.

2. Proposed Methodology

Consider a set of n subjects followed over the time interval [0, τ), τ > 0, and
suppose that for the i-th subject (i = 1, . . . , n) we observe: i) a sequence of mea-
surements of a longitudinal response yij = {yi(tij), j = 1, . . . , ni} summarized in
yi = (yi1, . . . , yini

)⊤ and occurring at times tij represented in ti = (ti1, . . . , tini
)⊤,

ii) a record of the time between admission to the study and the occurrence of the
event of interest (Ti) or censoring (Ci), summarized in Zi = min(Ti, Ci) and δi =
I(Ti ≤ Ci), where I(·) denotes the indicator function and iii) values of ph explana-
tory variables expressed as xhi(t) = [1, xhi1, . . . , xhiah

, xhiah+1(t), . . . , xhiph
(t)]⊤,

the first ah of which are independent of time. The subscript h = 1, 2 indicates
whether they correspond to the longitudinal or to the survival components, re-
spectively.

The longitudinal response for the i-th subject at time t ≥ 0 is modelled as

yi(t) = mi(t) + ei(t) (1)

where mi(t) = µ1i(t) +w1i(t) denotes the true value of the longitudinal response,
specified as a function of a mean response µ1i(t) = x1i(t)

⊤β1, with β1 representing
the fixed effects corresponding to p1 explanatory variables in x1i(t) and the process
w1i(t), characterized in terms of a specific time invariant random intercept for the
i-th subject, b0i ∼ N(0, σ2

0) and ei(t) ∼ N(0, σ2
e) denotes the measurement error,

considered independent of b0i, for all t ≥ 0.
We assume that the survival or censoring time observed for the i-th subject

follows the log-linear Birnbaum-Saunders regression model

Vi = log(Zi) = x⊤
2iβ2 + εi, (2)

where β2 contains the fixed effects corresponding to p2 explanatory variables in x2i

and the model errors εi ∼ SinhN(α, 0, 2), with SinhN(α, ψ, σ) denoting the Normal
hyperbolic sine distribution with α, ψ and σ representing the shape, location and
scale parameters, respectively. The associated density and survival functions are,
respectively
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For details on the relation between the Birnbaum-Saunders and the SinhN distri-
butions, see Leiva et al. (2007).

In this set-up we develop the likelihood function corresponding to the joint dis-
tribution of longitudinal and survival responses. Assuming that the random effects
b0i (i = 1, . . . , n) take into account both the association between the longitudinal
and survival responses, and the correlation between the longitudinal observations
(conditional independence), that the censoring mechanism and the observation
times of the longitudinal response are not informative and considering indepen-
dence between survival and censoring times [see Rizopoulos (2012b)], the joint
likelihood function is

L(θ) =

n∏
i=1

[∫
p(vi, δi | b0i;θz ,β1)

[ ni∏
j=1

p(yi(tij) | b0i;θy)

]
p(b0i; θb)db0i

]ωi

[p(vi, δi;θz0 )]
(1−ωi), (5)

where ωi = 1 if the i-th subject has at least one observation of the longitudi-
nal response and ωi = 0, otherwise, θ = (θ⊤

z ,θ
⊤
y , θb)

⊤, with θz = (θ⊤
z0, γ)

⊤

and θz0 = (α,β⊤
2 )

⊤ denoting the vectors containing the parameters for the sur-
vival responses for subsets of subjects that have or have not measurements of
the longitudinal outcome, respectively, θy = (β⊤

1 , σ
2
e)

⊤ denotes the vector con-
taining the longitudinal response parameters and θb = σ2

0 . Additionally, letting
Mi(t) = {mi(u), 0 ≤ u ≤ t} denote the history of the true unobserved longitudinal
process up to time t, we assume that

p(vi, δi | b0i;θz,β1) = [fi(vi |Mi(vi);θz,β1)]
δi [Si(vi |Mi(vi);θz,β1)]

(1−δi), (6)

where fi(·) and Si(·) respectively denote the probability density and survival func-
tions of the SinhN distribution with shape parameter α > 0, scale parameter σ = 2
and location parameter

ψγi = x⊤
2iβ2 + γmi(vi) = x⊤

2iβ2 + γ[x1i(vi)
⊤β1 + b0i], (7)

p(yi(tij) | b0i;θy) and p(b0i; θb) representing Normal probability density functions
for the longitudinal response and the random effects, respectively. The parame-
ter γ measures the association between the longitudinal and survival processes.
Furthermore, we assume that

p(vi, δi;θz0) = [fi(vi;θz0)]
δi [Si(vi;θz0)]

(1−δi), (8)

where fi(·) and Si(·) respectively denote the probability density and survival func-
tions of the SinhN distribution with shape parameter α > 0, scale parameter σ = 2
and location parameter ψ0i = x⊤

2iβ2.
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Explicit expressions for the terms composing the likelihood function (5) are
given in the Appendix.

Maximum Likelihood (ML) estimates of the joint model parameters are ob-
tained by direct maximization of (5) using a quasi-Newton algorithm implemented
via the PORT routines in the R optimizer nlminb (see Gay 1990), one of the algo-
rithms employed in the JM library (Rizopoulos 2012a). Numerical integration is
required because the integrals with respect to the random effects b0i, i = 1, . . . , n in
(5) have no analytical solution. For such purposes, we use Gauss-Hermite quadra-
ture methods as suggested by Wulfsohn & Tsiatis (1997), Henderson et al. (2000)
or Rizopoulos (2010), among others, for situations where the random effects vec-
tor for each subject has low dimension. In particular, this is the default method
employed in the JM library (Rizopoulos 2012a), except in cases where a large num-
ber of random effects per subject is available. In such cases, Rizopoulos, Verbeke
& Lesaffre (2009) recommend Laplace approximations. Explicit expressions for
the elements of the ML estimating equations U(θ) = ∂(logL(θ)/∂θ = 0 may be
obtained in Franco-Soto (2014), Appendix D.

Confidence intervals and tests of hypotheses about the parameters of interest
are based on empirical large sample results as suggested by Rizopoulos (2012b).

An additional interest is to predict the survival probabilities for a new subject
with longitudinal measurements Yi(t) = {yi(s); 0 ≤ s ≤ t} and values of base-
line covariates contained in the vector xi based on the fit of a joint model to a
random sample Dn = {Zi, δi,yi; i = 1, . . . , n}. In other words, interest lies in
the conditional probability of surviving time u > t, given survival up to time t,
πi(u | t) = P (Ti ≥ u | Ti > t, Yi(t),xi, Dn;θ). For such purpose we consider the
structure of the estimator of πi(u | t) using the empirical Bayes estimate for bi
proposed by Rizopoulos (2011), namely

π̃i(u | t) = Si{u |Mi(u, b̃
(t)

i , θ̂); θ̂}

Si{t |Mi(t, b̃
(t)

i , θ̂); θ̂}
, (9)

where θ̂ denotes the maximum likelihood estimates of the model parameters θ and
b̃
(t)

i = argmaxb log p(b | Ti > t, Yi(t); θ̂), where

p(b | Ti > t, Yi(t); θ̂) =
P (Ti > t, Yi(t), b; θ̂)

P (Ti > t, Yi(t); θ̂)

=
P (Ti > t | b; θ̂)p(Yi(t) | b; θ̂)p(b; θ̂)∫

P (Ti > t | bi; θ̂)p(Yi(t) | bi; θ̂)p(bi; θ̂)dbi
,

P{Ti > t | bi; θ̂} = Si{t | Mi(t, bi; θ̂); θ̂} denotes the survival function and
p(Yi(t) | bi; θ̂) =

∏ni(t)
j=1 p[yi(tij) | bi; θ̂] with ni(t) denoting the number of lon-

gitudinal measurements of the i-th unit up to time t. The performance of (9)
for finite samples depends on the quality of the ML estimates of θ and on the
prediction of the random effects bi.
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The methodology proposed in this paper was fully implemented in R
(R Development Core Team 2013).

3. Simulation

We conducted an extensive simulation study to compare the true survival prob-
abilities with dynamic predictions obtained from the fitted joint model, based on
the longitudinal data collected up to different instants and to evaluate the perfor-
mance of the method for estimating the model parameters.

The longitudinal response for the i-th subject at time t ≥ 0, yi(t), was gen-
erated by (1) under Normal distributions for both the random effects and error
terms considering observation time and dichotomized CHF etiology (Chagas dis-
ease = 0 or Other cardiomyopathies = 1) as covariates. The survival response was
generated by a log-linear Birnbaum-Saunders regression model (2) including only
CHF etiology as a covariate. To predict the survival probabilities, we considered
only individuals with at least one measurement of the longitudinal response, i.e.,
those for which ωi = 1 in (5).

The location parameter for the Birnbaum-Saunders model can be expressed as

ψγi
= β20 + β21CHFi + γ[β10 + β11vi + β12CHFi + b0i] (10)

and the variance components are σ2
0 and σ2

e .
The parameter values were taken as the estimates obtained by fitting the joint

models to the 529 patients with at least one longitudinal observation in the Incor
data.

First we generated the longitudinal observations for each patient and then con-
sidered the corresponding mean observation as well as the CHF etiology covariate
to generate the survival data, inducing an association between the two types of
response. To mimic the set-up in the Incor data, the survival times were right
censored either by specifying a Type I censoring scheme with a maximum follow-
up time of τ = 180 or by randomly selecting censoring times from a Uniform
distribution in the [0, τ ] interval.

Sixteen different scenarios resulting from the combination of 4 sample sizes
(n = 100, 250, 500, 1000) and 4 censoring percentages (pc = 0%, 25%, 50%, 75%)
were considered. For each scenario we generated 500 samples and, for each sam-
ple, we randomly selected 95% of the subjects to fit the Birnbaum-Saunders time-
to-event model; the remaining 5% were considered to estimate the conditional
survival probabilities based on the estimator π̃i(t + ∆t | t) in (9), as a function
of the longitudinal response observation times t = 0, 24, 48, 72, 96 and the time
increments ∆t = 12, 24, 36. The true probabilities πi(t + ∆t | t) were computed
using the true parameter and the true (generated) random effects values. The
comparison was carried out in terms of the absolute differences between estimated
conditional survival probabilities and their true values. The performance of es-
timators was evaluated via the bias (θ̂ − θ) with θ̂ = 500−1

∑500
l=1 θ̂l, the relative
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bias [(θ̂ − θ)/θ] as well as via the square root of the mean squared error (MSE),
[500−1

∑500
l=1(θ̂l − θ)2]1/2.

For each scenario, we constructed histograms for such differences based on the
500 samples and computed the corresponding 95-th percentile for each combination
of t and ∆t.

We show the results obtained for a sample of size n = 1000. Results for the
remaining scenarios may be obtained in https://www.ime.usp.br/∼acarlos/Diana/
ApendiceF.pdf

In Table 1 we present these values for the case without random censoring and
7% Type I censoring. The number of differences corresponds to the available
longitudinal measurements for the 50 subjects selected for prediction in the 500
samples.

Table 1: 95-th percentile and number of differences between true and estimated survival
probabilities, n = 1000, type I censoring = 7%, random censoring = 0%.

95-th percentile Number
∆t = 12 ∆t = 24 ∆t = 36 of differences

t = 0 0.25 0.34 0.35 25000
t = 24 0.18 0.24 0.27 18354
t = 48 0.12 0.18 0.21 11736
t = 72 0.09 0.15 0.18 7761
t = 96 0.08 0.12 0.15 5364

The results indicate that for a fixed time t, the differences between the true and
estimated probabilities increase as ∆t increases. This is justified by the increasing
distance between the time up to which longitudinal data are available and the
instant for which the prediction is made. Furthermore, for ∆t fixed, there is a de-
crease in these differences as t increases. A possible explanation is that availability
of more longitudinal measurements for each subject improves the predictions of the
random effects involved in the proposed estimator. To verify this, we computed
95-th percentile of the empirical distribution (based on the 500 generated samples)
of the differences between the true and predicted random effects. The results for
the scenario described above are displayed in Table 2 and confirm our conjecture.

Table 2: 95-th percentile and number of differences between true and estimated random
effects, n = 1000, type I censoring = 7%, random censoring = 0%.

95-th percentile Number of differences

t = 0 1.33 25000
t = 24 0.99 18354
t = 48 0.84 11736
t = 72 0.76 7761
t = 96 0.71 5364
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We also computed the mean and median of the maximum (among patients) dif-
ferences between the true and estimated survival probabilities for the 500 generated
samples. The results, displayed in Table 3 also confirm our previous conclusions.

Table 3: Mean and median of the maximum (among patients) differences between the
true and estimated survival probabilities, n = 1000, type I censoring = 7%,
random censoring = 0%.

∆t = 12 ∆t = 24 ∆t = 36

Mean Median Mean Median Mean Median

t = 0 0.30 0.28 0.41 0.37 0.43 0.40
t = 24 0.21 0.19 0.29 0.26 0.33 0.30
t = 48 0.14 0.12 0.20 0.18 0.24 0.22
t = 72 0.11 0.09 0.16 0.14 0.19 0.17
t = 96 0.08 0.07 0.13 0.11 0.16 0.14

In all cases, the bias, the relative bias and the square root of the MSE of the
parameter estimates decrease as the sample size increases or the percentage of
censoring decreases.

In Table 4 we present the average mean and median of the maximum (among
patients) differences between the true and estimated survival probabilities for the
500 generated samples for all combinations of t and ∆t values, weighted by the
number of maxima in each case.

Table 4: Weighted mean of mean and median of the maximum (among patients) diffe-
rences between the true and estimated survival probabilities.

Percent Weighted mean
n censored Mean Median

0% 0.22 0.20
1000 25% 0.20 0.18

50% 0.23 0.23
75% 0.50 0.49

0% 0.22 0.20
500 25% 0.19 0.17

50% 0.20 0.20
75% 0.42 0.41

0% 0.19 0.17
250 25% 0.16 0.14

50% 0.18 0.17
75% 0.35 0.34

0% 0.16 0.13
100 25% 0.13 0.11

50% 0.14 0.13
75% 0.26 0.25
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In Table 5, we present the bias, relative bias and square root of the MSE for
the case where n = 1000, no random censoring and 7% Type I censoring time.

Table 5: Bias, relative bias and square root of the MSE of estimators for n = 1000, type
I censoring = 7%, random censoring = 0%.

Parameter True value Simulation mean Bias Relative bias Square root of MSE

log(α) −0.460 −0.396 0.064 0.140 0.104
β20 6.140 5.480 −0.660 −0.108 0.928
β21 0.100 0.479 0.379 3.792 0.561
γ −0.460 −0.436 0.024 0.053 0.065
β10 5.800 5.670 −0.130 −0.022 0.218
β11 0.010 0.009 −0.001 −0.127 0.002
β12 −1.100 −1.073 0.027 0.024 0.183
log(σ0) 0.450 0.382 −0.068 −0.152 0.091
log(σe) −0.320 −0.276 0.045 0.139 0.061

Comparing the results from the different scenarios, we observed that the longi-
tudinal component parameter estimates are more stable than those associated to
the survival component which have a poor performance for small (n = 100) sample
sizes. In summary, we conclude that the performance of the proposed model is
better when: i) the sample size is larger and ii) the right censoring is smaller. In
particular when the right censoring percentage is large, the parameter estimates
have a poor performance and the prediction of the random effects are not as good
as those obtained when more longitudinal measurements are available. This leads
to a decrease in the quality of the prediction of the dynamic survival probabili-
ties. Therefore the Birnbaum-Saunders joint model is recommended for situations
where the underlying rationale for such model is reasonable, the sample size is
large and there is little right censoring.

4. Analysis of the Incor Data

The proposed joint model was applied to the cohort of 1609 patients with CHF,
of which 1080 have no BNP measurements.

Initially, the adequacy of the Birnbaum-Saunders model for the survival times
description in comparison with the exponential, Weibull and log normal mod-
els was verified, considering the analysis of the Cox-Snell residuals (see Klein &
Moeschberger 2003).

Then, we conducted an analysis involved a selection of “acceptable” models for
the longitudinal and for the survival data fitted separately via standard techniques
as suggested by Wu et al. (2012). The 529 patients with at least one longitudinal
observation were considered for the former and the complete set of 1609 patients
was used for the latter. In this process, each of 24 covariates were fitted individu-
ally along with CHF etiology (as suggested by the physicians) and the significant
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ones were subsequently fitted simultaneously to either the longitudinal or the sur-
vival component. The separate longitudinal and survival component models were
sequentially refitted with the removal of the non-significant variables or grouping
levels with non-significant effects in each step. The (significant) variables in the
last step were chosen to compose the joint model. Observation time, CHF etiology
and left atrium diameter were used as covariates for the longitudinal component
of the model whereas CHF etiology and left ventricular ejection fraction were
considered as covariates for the survival response.

The longitudinal component was modelled via (1) with

x1i(t) = [1, x1i1(t), x1i2, x1i3, x1i4, x1i5, x1i6, x1i7, x1i8]
⊤,

where x1i1(t) denotes the time at which the response was observed, x1i2, x1i3, x1i4,
x1i5, x1i6 are dummy variables associated to the categories of CHF etiology (di-
lated, ischaemic, hypertensive, alcoholic or other cardiopathies), x1i7, x1i8 are
dummy variables associated to the categories of left atrium diameter (augmented
or missing) and w1i(t) consisting of a random intercept b0i ∼ N(0, σ2

0).
The survival component was modelled via (2) with

x2i = [1, x2i1, x2i2, x2i3, x2i4, x2i5, x2i6, x2i7, x2i8]
⊤,

where x2i1, x2i2, x2i3, x2i4, x2i5 are dummy variables associated to the categories of
CHF etiology, x2i6, x2i7, x2i8 are dummy variables associated to the categories of
left ventricular ejection fraction (very low, low or missing) and εi ∼ SinhN(α, 0, 2).

Finally, the association between both components was imposed by (7).
Maximum likelihood parameter estimates and their standard errors obtained

via: i) the proposed joint model approach, which accommodates survival informa-
tion of all individuals [likelihood given by (5)] and ii) the traditional joint model
approach, where only individuals with at least one measurement of the longitu-
dinal response are included (likelihood given by the first component of (5), i.e.,
when ωi = 1), were compared with those obtained via marginal (longitudinal and
survival) models in each set-up. The results are summarized in Tables 6-9.

In case i), although standard errors are slightly smaller under the joint model,
no relevant differences between the joint and marginal models longitudinal pa-
rameter estimates were detected with the exception of the time coefficient for
which non-significance is more evident under the former model (p = 0.1100 versus
p = 0.0586). Estimates of the survival parameters and corresponding standard
errors are comparable for both models and the association parameter estimate is
positive and marginally significant (p = 0.0609).

In case ii), the standard errors of the longitudinal parameter estimates are
consistently smaller under the joint model, enhancing the significance of the time
coefficient (p < 0.0001 versus p = 0.0586). Survival parameter estimates and
corresponding standard errors obtained under the marginal and joint models are
relatively different, leading to changes in the significance in some cases. The
association parameter estimate is negative and highly significant (p < 0.0001).

To evaluate the effect of the percentage of patients with no longitudinal obser-
vations we refitted the joint model to the data of the 529 patients with at least one
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longitudinal measurements eliminating at random these measurements for 10%,
30% and 50% of them. The results obtained, displayed in Table 10, suggest that
the longitudinal components are less affected than the survival ones, when the per-
centage of subjects without measurements of the longitudinal response increases.
Although there are some changes in the sign of some coefficients, this is probably
due to the lack of significance in most cases. In particular, the estimates of the
coefficient of association between the longitudinal and survival components of the
model are affected as the proportion of patients without at least one measurement
of the longitudinal response increases, reaching a positive value for the case where
50% of subjects with no longitudinal measurements are included. Furthermore,
we note that the standard errors tend to be greater as the proportion of patients
without at least one measurement of the longitudinal response increases.

Table 6: Longitudinal component results - Proposed approach (n = 1609).

Marginal model Joint model
Parameter Estimate Std error p-value Estimate Std error p-value
Intercept 5.0529 0.2710 <0.0001 5.0808 0.2271 <0.0001
Time 0.0040 0.0021 0.0586 0.0037 0.0023 0.1100
Dilated cardiopathy −1.0525 0.2280 <0.0001 −1.0352 0.1561 <0.0001
Ischaemic cardiopathy −0.9640 0.2450 0.0001 −0.9692 0.1923 <0.0001
Hipertensive cardiopathy −1.2735 0.2268 <0.0001 −1.1949 0.1720 <0.0001
Alcoholic cardiopathy −0.2730 0.3861 0.4799 −0.1960 0.2427 0.4194
Other cardiopathies −0.4967 0.4000 0.2149 −0.4280 0.2408 0.0755
Augmented left atrium diameter 1.2543 0.2002 <0.0001 1.2047 0.1404 <0.0001
Missing left atrium diameter 1.1106 0.3080 0.0003 1.0539 0.2468 <0.0001
log(σ0) 0.3874 - - 0.3747 0.0364 <0.0001
log(σe) −0.3267 - - −0.3273 0.0256 <0.0001

Table 7: Survival component results - Proposed approach (n = 1609).

Marginal model Joint model
Parameter Estimate Std error p-value Estimate Std error p-value
log(α) 1.2506 0.1329 <0.0001 1.2401 0.1355 <0.0001
Intercept 7.1560 0.3460 <0.0001 7.0577 0.3530 <0.0001
Dilated cardiopathy −1.7624 0.1915 <0.0001 −1.6388 0.2011 <0.0001
Ischaemic cardiopathy 0.0945 0.1829 0.6056 0.1261 0.1836 0.4920
Hipertensive cardiopathy 0.3879 0.1673 0.0204 0.4371 0.1695 0.0099
Alcoholic cardiopathy 0.4768 0.2841 0.0933 0.4898 0.2825 0.0829
Other cardiopathies 0.1453 0.2734 0.5952 0.1788 0.2735 0.5133
Very low ejection fraction −0.9429 0.2135 <0.0001 −1.0043 0.2156 <0.0001
Low ejection fraction −0.1941 0.1991 0.3296 −0.2238 0.1995 0.2619
Missing ejection fraction −0.3156 0.2626 0.2294 −0.3049 0.2620 0.2445
γ - - - 0.0358 0.0191 0.0609
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Table 8: Longitudinal component results - Traditional approach (n = 529).

Marginal model Joint model
Parameter Estimate Std error p-value Estimate Std error p-value
Intercept 5.0529 0.2710 <0.0001 4.7027 0.1744 <0.0001
Time 0.0040 0.0021 0.0586 0.0092 0.0018 <0.0001
Dilated cardiopathy −1.0525 0.2280 <0.0001 −0.8847 0.1283 <0.0001
Ischaemic cardiopathy −0.9640 0.2450 0.0001 −0.7222 0.1505 <0.0001
Hipertensive cardiopathy −1.2735 0.2268 <0.0001 −1.1674 0.1694 <0.0001
Alcoholic cardiopathy −0.2730 0.3861 0.4799 −0.2799 0.1975 0.1563
Other cardiopathies −0.4967 0.4000 0.2149 −0.1495 0.2116 0.4801
Augmented left atrium diameter 1.2543 0.2002 <0.0001 1.2418 0.1359 <0.0001
Missing left atrium diameter 1.1106 0.3080 0.0003 1.0863 0.2477 <0.0001
log(σ0) 0.3874 - - 0.3882 0.0364 <0.0001
log(σe) −0.3267 - - −0.3266 0.0257 <0.0001

Table 9: Survival component results - Traditional approach (n = 529).

Marginal model Joint model
Parameter Estimate Std error p-value Estimate Std error p-value
log(α) 0.0265 0.0881 0.7636 −0.4753 0.0802 <0.0001
Intercept 5.0137 0.2959 <0.0001 7.1990 0.3427 <0.0001
Dilated cardiopathy 0.3346 0.1689 0.0476 −0.0518 0.1251 0.6792
Ischaemic cardiopathy 0.3241 0.1786 0.0696 0.1722 0.1346 0.2007
Hipertensive cardiopathy 0.6687 0.1726 0.0001 0.1698 0.1291 0.1883
Alcoholic cardiopathy 0.4770 0.2905 0.1006 0.3777 0.2148 0.0787
Other cardiopathies 0.3225 0.2869 0.2609 0.2170 0.2193 0.3224
Very low ejection fraction −0.6077 0.2614 0.0201 −0.0620 0.2090 0.7668
Low ejection fraction −0.2235 0.2579 0.3860 0.0041 0.2073 0.9843
Missing ejection fraction −0.3338 0.3977 0.4014 −0.1503 0.2962 0.6118
γ - - - −0.4569 0.0428 <0.0001

5. Discussion

We propose a methodology for joint modelling of longitudinal and survival
data, which differs from the methods proposed in the literature by considering a
Birnbaum-Saunders model to describe the survival response and incorporating the
survival information of subjects without observations of the longitudinal response.

The results of the simulation and practical application to the Incor data when
only individuals with at least one measurement of the longitudinal response are in-
cluded in the joint model, suggest that the inclusion of longitudinal measurements
of an appropriate response may be employed to improve the analysis of survival
data. In particular, an increase in the number of subjects with measurements of
the longitudinal response can improve the evidence of the association between the
longitudinal and survival responses and can lead to an increase in the precision
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of parameter estimates. Further, an increase in the number of observations of
the longitudinal response collected in a subject can improve the quality of the
prediction of survival.

Table 10: Effect of percentage of patients with no longitudinal observations.
Percentage of patients with no longitudinal observations

0% 10% 30% 50%
Estimate SE Estimate SE Estimate SE Estimate SE

Longitudinal component
parameter
Intercept 4.703 0.174 5.022 0.187 4.911 0.202 5.138 0.203
Time 0.009 0.002 0.004 0.002 0.006 0.002 0.003 0.002
Dilated cardiopathy −0.885 0.128 −0.995 0.139 −0.933 0.142 −1.014 0.140
Ischaemic cardiopathy −0.722 0.151 −0.791 0.186 −0.777 0.213 −0.879 0.136
Hipertensive
cardiopathy

−1.167 0.169 −1.196 0.178 −1.111 0.156 −1.205 0.182

Alcoholic cardiopathy −0.280 0.197 −0.156 0.211 −0.632 0.252 −0.206 0.172
Other cardiopathies −0.149 0.212 −0.383 0.218 −0.303 0.225 −0.504 0.361
Augmented left atrium
diameter

1.242 0.136 1.225 0.132 1.199 0.134 1.184 0.142

Missing left atrium
diameter

1.086 0.248 1.034 0.238 0.951 0.272 1.017 0.246

log(σ0) 0.388 0.036 0.386 0.036 0.405 0.037 0.379 0.037
log(σe) −0.327 0.026 −0.346 0.027 −0.360 0.030 −0.364 0.036
Survival component
parameter
log(α) −0.475 0.080 −0.001 0.087 0.020 0.088 0.024 0.088
Intercept 7.199 0.343 5.664 0.376 5.373 0.383 4.813 0.406
Dilated cardiopathy −0.052 0.125 0.234 0.170 0.280 0.172 0.366 0.175
Ischaemic cardiopathy 0.172 0.135 0.238 0.180 0.256 0.183 0.356 0.184
Hipertensive
cardiopathy

0.170 0.129 0.542 0.175 0.587 0.179 0.701 0.179

Alcoholic cardiopathy 0.378 0.215 0.438 0.286 0.372 0.293 0.493 0.291
Other cardiopathies 0.217 0.219 0.284 0.281 0.307 0.287 0.356 0.291
Very low ejection
fraction

−0.062 0.209 −0.568 0.260 −0.606 0.260 −0.583 0.262

Low ejection fraction 0.004 0.207 −0.174 0.258 −0.209 0.257 −0.211 0.257
Missing ejection fraction −0.150 0.296 −0.309 0.392 −0.309 0.396 −0.311 0.397
γ −0.457 0.043 −0.117 0.039 −0.060 0.040 0.029 0.041

Despite the need of joint modelling in this case, according to the results ob-
tained previously, the results were not so evident in the practical application to
the Incor data when survival information of all subjects is considered in the joint
model, probably because of the observational nature of the study, carried out
during 9 years with no fixed protocol for data collection. The large proportion
(67%) of patients with no measurements of the longitudinal response may have
masked the association between the two components of the joint model. Despite
these results, the proposed methodology can be useful if there are cases of subjects
without longitudinal information that should be included in the analysis.

In addition, the results obtained show the usefulness of the Birnbaum-Saunders
model to describe the survival times in situations in which a cumulative damage
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caused by several risk factors may lead to a degradation and to a consequent
failure, as in the case of CHF.

Future research is needed before this approach can be routinely used in practical
problems. In particular, we mention diagnostic techniques and simulation studies
to determine the effect of the proportion of units without longitudinal data on
the joint model parameter estimates, considering the context of balanced studies
where all subjects have the same amount of measurements of the longitudinal
response, because the performance of the estimation method depends not only on
the number of units with measurements of the longitudinal response, but also on
the number of longitudinal observations collected in each subject, as previously
discussed.
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Appendix

Explicit expressions for the terms composing the likelihood function (5)

fi(vi |Mi(vi);θz,β1) =
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2π
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2
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,
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p(b0i; θb) =
1

(2πσ2
0)

1/2
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0

}
,
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and
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The Gauss-Hermite quadrature approximation of the logarithm of (5), namely,

l(θ) =

n∑
i=1
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is given by
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with

κik1(vi) =
2

α
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√
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,

with sk denoting the k-th root of the Q-th order Hermite polynomial and wk the
corresponding weight,
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.
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