
Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2313-2318 2313

www.etasr.com Jayakumar and Kulkarni: A Simple Measuring Model for Evaluating the Performance of Small Block …

A Simple Measuring Model for Evaluating the
Performance of Small Block Size Accesses in Lustre

File System

Naveenkumar Jayakumar
Department of Computer Engineering

Bharati Vidyapeeth Deemed University
College of Engineering

Pune 43, India
naveenkumar@bvucoep.edu.in

Anuja Kulkarni
Department of Computer Engineering

Bharati Vidyapeeth Deemed University
College of Engineering

Pune 43, India
anukul2009@gmail.com

Abstract—Storage performance is one of the vital characteristics
of a big data environment. Data throughput can be increased to
some extent using storage virtualization and parallel data paths.
Technology has enhanced the various SANs and storage
topologies to be adaptable for diverse applications that improve
end to end performance. In big data environments the mostly
used file systems are HDFS (Hadoop Distributed File System)
and Lustre. There are environments in which both HDFS and
Lustre are connected, and the applications directly work on
Lustre. In Lustre architecture with out-of-band storage
virtualization system, the separation of data path from metadata
path is acceptable (and even desirable) for large files since one
MDT (Metadata Target) open RPC is typically a small fraction of
the total number of read or write RPCs. This hurts small file
performance significantly when there is only a single read or
write RPC for the file data. Since applications require data for
processing and considering in-situ architecture which brings data
or metadata close to applications for processing, how the in-situ
processing can be exploited in Lustre is the domain of this
dissertation work. The earlier research exploited Lustre
supporting in-situ processing when Hadoop/MapReduce is
integrated with Lustre, but still, the scope of performance
improvement existed in Lustre. The aim of the research is to
check whether it is feasible and beneficial to move the small files
to the MDT so that additional RPCs and I/O overhead can be
eliminated, and read/write performance of Lustre file system can
be improved.

Keywords-Big Data; Metadata; Lustre; Active Storage; Small
File

I. INTRODUCTION

The quantity of data generated and consumed by HPC
(high-performance computing) applications is increasing
exponentially. Current I/O paradigms and file system designs
are often overwhelmed by this deluge of data. To improve the
I/O throughput to a certain extent, parallel file systems
incorporate features such as data striping, sharing resources,
etc. File systems such as Lustre, AFS, NFS use a single
metadata server to manage globally shared file system

namespace. While simple, scalability can’t be achieved by this
design, having as result the metadata server to become a
bottleneck and a single point of failure. In big data
environment, most of the files (70%) are small, and most data
(nearly 90%) is placed in big files. The number of small files is
big though used space is not. Small files consume more
resources and produce big slowdown. Also, the latency of
access to small files is important. The problem is studied by
considering Lustre file system as a use case. Lustre file system
is open source, most widely used in HPC environment and easy
to implement.

Lustre is a General Public Licensed (GNU), open-source
distributed, parallel file system. It is developed and maintained
by Sun Microsystems Inc. Lustre is supported by Linux
operating system, and it presents a POSIX interface to its
clients with which shared file objects can be accessed in
parallel. The key features offered by the Lustre file system are,
among others, scalability, high-performance, POSIX
compliance, high availability, interoperability. Lustre is an
object-based file system with three main components: Object
Storage Servers (OSSs), Metadata Servers (MDSs), and clients.
When a client wants to write a file to the Lustre file system,
first it communicates with the MDS with a write request. The
MDS checks for the user authentication and the intended file
location. Depending on the file system settings or the directory
settings, the MDS sends back a list of OSTs that can be used by
the client to write the file. Once the reply is sent by the MDS,
the client can now directly interact with the assigned OSTs
without any contact with the MDS. This is applicable for any
file regardless of size, whether it's a few bytes or a few
terabytes [1]. The main advantage of Lustre file system over
Storage Area Network (SAN) file system and Network File
System (NFS) is that it provides: a global name space, the
ability to distribute very large files across multiple storage
nodes, wide scalability, in performance as well as storage
capacity. Since large files are distributed across many nodes in
the cluster environment, Lustre file system is best suited for
high-end HPC cluster I/O systems. Lustre servers are equipped
with multiple storage devices which provide high-availability.

Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2313-2318 2314

www.etasr.com Jayakumar and Kulkarni: A Simple Measuring Model for Evaluating the Performance of Small Block …

Lustre can handle and serve up to tens of thousands of clients.
The high-availability mechanism should enable any cluster file
system to handle server failures or reboots transparently. The
Lustre failover mechanism is robust and transparent, and it
allows servers to be upgraded without the need to take the
system down. Accessing small files on the Lustre is not
efficient. The read/write performance of Lustre file system is
currently optimized for large files, i.e. files more than few
megabytes in size. To access any file, client has to send initial
open RPC to the MDT and after that, to fetch the data from the
OSTs, there are separate read/write RPCs to the OSTs. In
addition to this, there are separate RPCs to perform disk I/O on
MDT and OST. This functionality separation is desirable for
large files since one open RPC to MDT requires less execution
time compared to total number of read/write RPCs to OSTs,
but this affects overall performance of small file significantly
when there is only one read or write RPC to the OSTs for
accessing file data. One possible way to improve small file
performance in Lustre is to put the data for small files only on
the MDT where metadata also resides so that additional RPCs
and I/O overhead can be eliminated. This research aims to
check whether it is feasible and beneficial to move the data
from OST to MDT and if yes how much data can be pushed
onto the MDT.

II. BACKGROUND

A. Lustre: Component View On Architecture

Lustre file system is supported by Linux operating system,
and it presents a POSIX interface to its clients with which
shared file objects can be accessed in parallel. Lustre is an
object-based file system with three main components: Object
Storage Servers (OSSs), Metadata Servers (MDSs), and clients.
Lustre components are as shown in Figure 1.

Fig. 1. Lustre: Component view on architecture

B. Lustre Components

 Metadata Server (MDS) - Metadata servers provide
metadata services. Correspondingly the Metadata Client
(MDC) is a client of those services that makes metadata
available to the Lustre clients. File metadata, such as file
names, access permissions, directory structures, is stored on
the Metadata Target (MDT).

 Management Server (MGS) - The management server,
stores configuration information for all available Lustre file

systems in a cluster. Lustre clients and Lustre target
contacts the MGS to retrieve and provide information
respectively. The MGS can have a separate disk for storage,
or it can share a disk with a single MDT.

 Object Storage Server (OSS) - The OSS exposes block
devices and serves data to the client. Correspondingly,
Object Storage Client (OSC) is a client of the services.
Each OSS manages one or more OSTs (Object Storage
Targets). OSTs are used to store file data in the form of
objects.

C. Lustre Functionality

The collection of MDS/MGS and OSS/OST are referred to
as Lustre server front ends and ldiskfs, fsfilt as Lustre server
back ends. In Lustre, file operations like create, open, write,
read, etc. require metadata information which is stored on
MDS. This service provided by MDS is accessed through client
interface module, known as Metadata Client (MDC).

Fig. 2. Basic Lustre I/O operation

From the MDS point of view, every single file is composed
of numerous data objects, and these objects are striped across
one or more OSTs. Each data object is assigned with a unique
object id. MDS stores normal file metadata attributes like inode
with some additional information known as Extended
Attributes (EA). Extended attribute is used to store file objects
layout information (also called as striping EA) which is used to
map file object id with corresponding OSTs. Consider one
example, if a file P has a stripe count of three, then its EA will
be :

EA <obj id X, ost a>

 <obj id Y, ost b>

 <obj id Z, ost c>

Stripe size and stripe width

Before reading the file stored on the OSTs, client will
communicate with MDS via MDC (Metadata Client) and
collect the information about OSTs where the objects of the file
are stored. According to the example, the objects of the file are
stored on OST a, OST b and OST c. At client side, this
information is structured in LOV (logical object volume). Now
the client can communicate with corresponding OSTs through
a client module interface known as OSC (Object Storage
Client). LOV is the software layer in the client stack and it is
used to direct the pages towards the correct OSCs and then the

Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2313-2318 2315

www.etasr.com Jayakumar and Kulkarni: A Simple Measuring Model for Evaluating the Performance of Small Block …

OSCs assemble a vector of pages, group them and send them to
OST through PoratlRPC and LNET.

III. RPC MECHANISM IN NATIVE LUSTRE

In Lustre file system, the communication between client
and server is coded as an RPC (Remote Procedure Call) request
and response. This middle layer is known as ptl-rpc i.e., Portal
RPC which translates the file system request in the form of
RPC request and response and the Lustre Networking (LNET)
provides network infrastructure to put that down onto the wire.

A. RPC to MDS

Let's assume client C1 wants to open the file
/lustre/d1/d2/test.txt to read. Here /lustre is the mount point.
The first RPC request is lock_enqueue with lookup intent. This
request is sent to MDS for the lock on d1. The second RPC
request is also lock en-queue with lookup intent. This request is
also sent to MDS asking inodebits lock for d2. The inodebits
lock will be returned with its resources represented by the fid
of d1 and d2. The third RPC request is a lock_enqueue with
open intent, but it is not asking for lock on test.txt. The file
content is provided by OST, and hence it can be opened and
read without a lock form MDS. Now the lock is requested from
an OST.

B. RPC to OSS

After getting the EA structure from the MDS, the client can
communicate with OSS. Consider one example with one client
and four OSTs. Client C1 reads file P. The file P is striped
across four OSTs with data objects P1, P2, P3, and P4. First,
client C1 sends lock enqueue requests to all four OSTs in
parallel, asking for read lock with intent flag set. If any of the
objects client C1 is asking has a blocking request, then the
corresponding OSTs don't grant the lock. Instead, they just
return the information described by a data structure lvb (Lustre
Value Block). lvb contains the information like file size,
modification time, etc. If there are no any conflicts, the read
locks on the entire file objects will be granted to C1 with lock
mode PR.

1) When client C1 wants to access a file stored on OSTs, it
sends LOOKUP RPC to MDS

2) At the MDS side, after receiving RPC from client C1, the
Lock Manager will grant the lock for the resource requested
by the client. Now client C1 sends the second RPC to the
MDS with the intent to create or open the file.

3) So, at the end of step 2, C1 will get the lock, extended
attribute (EA) information and other metadata details which
the client needs to communicate with OSTs.

4) Once the client gets the lock and EA information, it can
perform I/O operations.

5) MDS maintain queue to track the allocated resources. When
multiple clients try to access the same file then the new
client has to wait in the waiting queue till the time the
current owner of the lock releases the lock. Once the lock is
released, the MDS will then hand over the lock to the new
client.

6) For example, client C2 wants to access the same file which
was earlier opened by C1 then C2 will be placed in the
waiting queue. MDS will send a blocking AST to C1 to
revoke the lock granted. On receiving the blocking AST,
C1 will release the lock. In some scenario where client C1
is down or something goes wrong, MDS will wait for a
ping timeout of 30 seconds after which it will revoke the
lock.

7) Once the lock is revoked, the MDS will grant a lock handle
and EA for the file to C2. C2 can proceed with I/O once it
gets the lock handle and EA information.

C. RPC Mechanism in Proposed System

This research aims to improve the performance of small
files by putting small files data only on MDT so that the
additional read/write RPCs to the OSTs can be eliminated. This
allows the improving of small file performance. The MDT
storage is configured with RAID 1+0 which is well-known for
high-IOPS. Data on MDT can be used in conjunction with
DNE (Distributed Namespace) to improve the efficiency. To
store file data on the MDT, system administrators or users must
explicitly specify a layout that will allow storing the data on
MDT at the time of file creation. The maximum file size for
which data can be stored on MDT must be specified by the
administrator so that users cannot store large files on MDT
which will cause problems to other users. If the layout of a file
specifies to the client to store the data on the MDT, but the file
size reaches to the maximum size specified by the
administrator, then the data will be migrated to OST. In native
Lustre architecture, the small file data is present on the OST.
Whenever the client wants to access data from small files, it
has to send RPCs to both MDS and OSS. As the number of
RPCs get increased the overall latency increases which affects
the I/O performance. In the proposed system, the data for small
files will be stored on MDT instead of OSTs. Since the data
and metadata are present on MDT, the client has to send RPC
to MDS only. As the number of RPCs decreases the overall
latency also decreases and I/O performance for the small files
can be improved to some extent.

IV. CORE METHODOLOGY

A. Lustre Setup

Figure 2 shows the proposed system architecture in which
two virtual machines are created. The virtual machines are
formatted with CentOS 6.7 operating system and kernel is
patched with Lustre 2.7.0 software release. One virtual
machine is configured with MDS (Metadata Server) having
single MDT (Metadata Target) and other with OSS (Object
Storage Server) with two OSTs (Object Storage Target). Lustre
clients are connected to the server over Ethernet connection,
and they are also formatted with CentOS6.7 operating system.
Lustre file system contains two types of servers, a metadata
server (MDS) and one or more object storage servers (OSSs).
Since the MDS is the starting point for all POSIX file system
operations, it must quickly handle many remote procedure calls
(RPCs). To access the file from a Lustre file system, Lustre
client needs to query to the metadata target via the MDS to

Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2313-2318 2316

www.etasr.com Jayakumar and Kulkarni: A Simple Measuring Model for Evaluating the Performance of Small Block …

obtain the file attributes (e.g., file type, owner, access
permission) along with the file data layout.

Fig. 3. System architecture

The IO operations on the MDT are mostly small and
random. If more data is cached into memory, then the MDS can
respond to client queries faster. Therefore, the MDS needs a
large amount of RAM to cache the working set of files, and
powerful CPUs to handle the simultaneous inquiries. The
amount of memory required by the MDS depends on a number
of clients and the number of files accessed by them in their
working set. Apart from 1 GB memory required by the
operating system and 4 GB memory needed for the file system
journal, nearly 0.1% of the MDT size is needed for the MDT
file system's metadata cache. The remaining RAM is available
for caching the file data for the client/application file working
set. The file working set cached in the RAM is not used by the
clients actively all the time, but it should be kept hot to reduce
IO latency and avoid adding extra read IO/s to the MDT which
is under load. For the kernel data structure approximately 2 KB
of RAM is needed, to keep a file in the cache without a lock.
For the LDLM (Lustre Distributed Lock Manager) lock every
client requires 3 KB of RAM for each file in the cache.

B. Lustre Benchmarking Tools

Native Lustre performance can be monitored by using
different benchmarking tools. The IOzone [2] tool is used to
test the read/write performance of small files on Lustre
platform. IOR [3] test is conducted to benchmark the speed of
read/write operations on MDT and OST. Data Duplicator [4]
command is implemented to monitor whether it is beneficial to
move small file data on MDT to minimize the number of
RPCs. The dd command is used to check the feasibility of the
proposed model. It is not possible to put the data on MDT and
test the small file performance directly as the file layout must
be specified before accessing any file.

1) IOzone: IOzone is the benchmarking tool for the file
system. The benchmark measures a variety of file
operations (read, write, etc.) and generates the results
accordingly. IOzone runs under multiple operating systems.
IOzone is useful for performing file system analysis
broadly, and it tests file I/O performance for the following
file operations: Read, write, re-write, re-read, fread, fwrite,

read backwards, random read, read strided, mmap, pread,
aio_read, aio_write.

2) IOR: IOR (Interleaved or Random) is designed to measure
I/O performance of parallel file system at both the MPI-IO
and POSIX level. The IOR benchmark is developed by
LLNL (Lawrence Livermore National Laboratory), and it
tests system performance by considering parallel/sequential
read/write operations. The IOR_survey script is used to test
the performance of the Lustre file system. It uses various
interfaces and access patterns to test the performance of a
parallel file system. MPI is used for process
synchronization. Under the control of constants defined at
compile time, I/O is done via MPI-IO. The data is written
and read using parallel transfers of blocks of contiguous
bytes. These blocks are of equal size, and they do not
overlap each other. The test consists of three main
operations - creating a new file, writing the data in it, then
reading the data block. There are two ways to run IOR:

(a) Interactive command line with arguments. For example:
IOR -w -r -o filename
This performs write and read to the specified file.

(b) Interactive command line with scripts. For example:
IOR -w -f script.
This performs all tests in the script to check write data
performance.

3) DD (Data Duplicator) Command: The dd command stands
for "data duplicator". It is used for data copying and
converting. It is a very powerful utility for Linux which is
used for multiple applications like –Backup. It can restore a
partition or the entire hard disk, backup of Master Boot
Record (MBR) and is also used by Linux kernel make file
to make boot images. Improper usage of dd command can
lead to data loss, hence it must be run by the super user.
The syntax for dd command is -
dd if=<source file name> of=<target file name> [options]--
[4]. n the syntax above ' if 'stands for input-file and ' of '
stands for output-file. The 'source file name' and 'target file
name' in the syntax can be disks, partitions, files or devices
from which data can be read or written. To test the native
Lustre performance, ‘dd’ command can be run on Lustre
client node. ‘dd’ command is used to monitor the write
performance of disk device.

V. RESULT ANALYSIS

A. Small File Performance on Native Lustre Platform

The IOzone test is conducted on Lustre client node to check
the I/O performance of read/write file operations in native
Lustre platform and also the impact of record size on I/O
performance. A set of IOzone tests is executed on the client to
find out the influence of record size. To evaluate the read/write
performance with IOzone, the file size is set to 2G with stripe
size 4M and data striped across 2 OSTs. Figure 4 shows the
results of the tests. The vertical axis is the read/write bandwidth
(data transfer rate in bits/sec), and the horizontal axis is the
record size. The red line shows write performance, and the blue
line shows read performance.

Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2313-2318 2317

www.etasr.com Jayakumar and Kulkarni: A Simple Measuring Model for Evaluating the Performance of Small Block …

Fig. 4. Small file performance in Lustre

As shown in Figure 4, the trend of the two lines is almost
the same, but when the record size is 128K, 256K, and 1M, the
performance is better than others. For the record size 4K or 8K,
most of the RPC packets contain only one or two pages and
hence the I/O efficiency is much lower. From the graph above,
it can be concluded that for small record size less number of
RPCs are required and the overall I/O performance gets
affected when there is only one read or write RPC to the OSTs
for accessing the file data. This shows that in the native Lustre
platform small files get processed slowly with less record size
which will decrease the overall I/O performance.

B. Feasibility Check of the Proposed System

The write performance of OST and the write performance
of MDT are compared by running dd command on client node
and MDT. As shown in Figure 5, when dd command is run on
the client, the latency is more, compared to latency achieved
when dd command is run on MDT. This means, when the client
accesses small file data stored on OST, it has to send RPCs to
both MDS and OSS and thus the time required to perform
read/write operation increases. As the client has to send RPCs
to both MDS and OSS, the network overhead gets increased.

Fig. 5. Latency comparison

When the dd command is run on MDT, the latency is less.
This means that if the small files get stored on the MDT, they
can be accessed very fast with the minimal number of RPCs. In
this case, since the data and metadata will both get stored on
MDS, there is no need to send RPCs to the OSS. Considering
the results above, it can be concluded that, it is feasible to move

small file data on MDT in order to increase small file IO
performance. One more important factor that must be
considered here is the maximum block size of file for which the
data can be moved to MDT. The maximum block size for
which data can be stored on MDT can be obtained by
evaluating the results of latency test on MDS for different
block sizes. Figure 6 shows the results achieved by running dd
command on MDT. Here, the latency is less for the block size
of up to 8KB. For the block size of 16 KB and above the
latency increases exponentially. If the latency is high for the
block size of 16 KB and above then it is not beneficial to store
the file data on MDT because the small files are more latency
sensitive. For the maximum of 8 KB block size, the latency is
very low.

Fig. 6 Latency Test for Maximum Block Size

So it can be concluded that in Lustre file system with 2 GB

RAM for MDT, maximum 8 KB record size files can be stored
on MDT. These files require minimum latency without
impacting the system performance and that way the I/O
performance of the small files increases.

VI. CONCLUSION

The read/write performance of Lustre file system is
currently optimized for large files. The read/write performance
depends on the number of LOOKUP RPCs between client to
OST and client to MDT. To access any file, client has to send
initial open RPC to the MDT and after that, to fetch the data
from the OSTs, there are separate read/write RPCs to the
OSTs. This functionality separation is desirable for large files,
but this affects the overall performance of small files
significantly when there is only one read or write RPC to the
OSTs for accessing the file data. Also, the small files are more
latency sensitive. One possible way to improve small file
performance in Lustre is to put the data for small files only on
the MDT where metadata also reside so that additional RPCs
and I/O overhead can be eliminated. In the current work, the
native Lustre I/O performance is tested by different
benchmarking tools (IOzone, IOR) and it is evaluated and
proposed that storing small file data on the MDT is feasible and
the maximum record size for which data can be stored on MDT
with 2 GB RAM is 8KB. The scope of this research is not
limited to Lustre file system. It can also be applied to other
parallel distributed file systems (for example Ceph, HDFS) that
store data and metadata on separate servers. Lustre file system
is most widely used in big data environment in which most of

Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2313-2318 2318

www.etasr.com Jayakumar and Kulkarni: A Simple Measuring Model for Evaluating the Performance of Small Block …

the files (70%) are small, and most data (nearly 90%) is placed
in big files. The number of small files is big though used space
is not. Small files consume more resources and produce big
slowdown. Also, the latency of access to small files is
important. This research is very helpful in big data environment
to handle small files and to increase the read-write performance
of small files.

REFERENCES
[1] F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang, I. Huang,

Understanding Lustre Filesystem Internals, National Center for
Computational Sciences, Oak Ridge National Laboratory, 2009

[2] Iozone Filesystem Benchmark, http://www.iozone.org

[3] NERSC, IOR Test, https://tinyurl.com/jnmdo8u

[4] The Linux Juggernaut, 12 Linux dd Command Examples,
https://tinyurl.com/ycg6acpm

