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Abstract—The generalized traveling salesman problem (GTSP) 
deals with finding the minimum-cost tour in a clustered set of 
cities. In this problem, the traveler is interested in finding the 
best path that goes through all clusters. As this problem is NP-
hard, implementing a metaheuristic algorithm to solve the large 
scale problems is inevitable. The performance of these algorithms 
can be intensively promoted by other heuristic algorithms. In this 
study, a search method is developed that improves the quality of 
the solutions and competition time considerably in comparison 
with Genetic Algorithm. In the proposed algorithm, the genetic 
algorithms with the Nearest Neighbor Search (NNS) are 
combined and a heuristic mutation operator is applied. 
According to the experimental results on a set of standard test 
problems with symmetric distances, the proposed algorithm finds 
the best solutions in most cases with the least computational time. 
The proposed algorithm is highly competitive with the published 
until now algorithms in both solution quality and running time. 

Keywords-genetic algorithms; traveling salesman; generalized; 
nearest neighbor 

I. INTRODUCTION 

Genetic Algorithm (GA) is a search heuristic that mimics 
the process of natural evolution [1]. This heuristic algorithm 
(also sometimes called a metaheuristic) is routinely used to 
generate useful solutions to optimization and search problems. 
GAs belong to the larger class of evolutionary algorithms (EA), 
which generate solutions to optimization problems using 
techniques inspired by natural evolution, such as inheritance, 
mutation, selection, and crossover. In a genetic algorithm, a 
population of candidate solutions (called individuals, creatures, 
or phenotypes) to an optimization problem is evolved toward 
better solutions. Each candidate solution has a set of properties 
(its chromosomes or genotype) which can be mutated and 
altered [2]. The evolution usually starts from a population of 
randomly generated individuals and is an iterative process, with 
each iteration’s population called a generation. In each 
generation, the fitness of every individual in the population is 
evaluated. The fitness is usually the value of the objective 
function in the optimization problem being solved. The more fit 
individuals are stochastically selected from the current 
population, and each individual’s genome is modified 

(recombined and possibly randomly mutated) to form a new 
generation. The new generation of candidate solutions is then 
used in the next iteration of the algorithm. The algorithm 
continues to run until one of the following criteria is met: 

 A pre-defined fitness score is reached 

 A specified number of iterations are completed or 
alternatively, a set time limit is reached 

 No improvement is achieved in a specified number of 
iterations 

The Generalized Traveling Salesman Problem (GTSP) is a 
generalized version of the Traveling Salesman Problem (TSP). 
In this problem, the cities are divided into a number of clusters 
and the traveling salesman has to find the minimum-cost tour 
which passes through exactly one city from each cluster. 
Consider R which is formed by a set of nodes that has been 
separated to m non-empty incompatible proper subsets: 

1
        

m
ii

R v R N


   (1) 

Each node has been connected by one or more arcs from E, 
so that each arc connects two nodes from different clusters. 

( , )     i v  , j v  , i j i ji j E     in which R and E compose 

 ,G R E , that represents the GTSP’s net. The shortest tour 

that starts from one node of a cluster and passes through only 
one node of every other clusters and finishes at the starting 
point is desired. 

II. LITERATURE REVIEW 

The generalized form of TSP is called GTSP, and this 
problem’s aim is optimizing the path between polygons instead 
of the single nodes. Authors in [3, 4] studied precision 
algorithms and theoretical approaches to solve this problem. 
An integer linear program and also, exact and heuristic 
separation procedure for some classes of facet-defining 
inequalities, which are used within a branch-and-cut algorithm 
for the exact solution of GTSP was proposed in [5]. In this 
study the best objective values of the aforementioned paper 
were used, in order to test the results of proposed algorithm. 
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Authors in [6] developed an innovative algorithm for 
minimizing airtime of a cutting tool. 3ρ/2 approximation 
algorithm has been presented in [7], where ρ is the number of 
cities in the largest cluster while the worst-case bound may be 
weak, as ρ may be quite large. Another approximation 
algorithm for the group Steiner tree problem has been proposed 
in [8]. In both [7, 8], the triangle inequality must be satisfied. 
Authors in [9] proposed an efficient innovative approach for 
solving GTSP. In their method, random-key GA is combined 
with a local tour improvement heuristic to improve the quality 
of solutions and the time required for obtaining them. A 
particle swarm optimization based algorithm was recently 
developed as well by authors in [10]. Also, an ant colony 
optimization (ACO) is used to solve GTSP in [11]. Authors in 
[12] proposed a GA with several new features, including 
isolated initial populations and a new reproduction mechanism 
based on the TSP ordered crossover operator. This new 
mechanism was called mrOX, for modified rotational ordered 
crossover. Another way to solve the GTSP is to turn it into the 
TSP [13]. The procedure of adaptation of a TSP neighborhood 
for the GTSP has been formalized in [14]. Authors in [15] 
proposed Memetic Algorithm to solve the GTSP where the 
crossover operator relies on large neighborhood search. Their 
main contribution was the originality of their crossover 
procedure. The Lin–Kernighan heuristic is known to be a very 
successful TSP one. A number of adaptations of Lin–
Kernighan for the GTSP are presented by authors in [14]. They 
have discussed several approaches to adapt TSP local search 
for the GTSP. Authors in [16] have extended the ant colony 
optimization method from TSP to GTSP and based on the basic 
extended ACO method, they have developed an improved 
method by considering the group influence, besides a mutation 
process and a local search technique, namely 2-OPT search has 
been applied. Applications of the GTSP are also discussed in 
[17]. A local-global approach for the generalized traveling 
salesman problem and also an efficient algorithm for solving 
the problem based on genetic algorithms is proposed in [18, 
19]. A new memetic algorithm to solve the symmetric and 
asymmetric instances of GTSP which is called GK is presented 
by authors in [20]. Their new memetic algorithm due to 
powerful local search, well-fitted genetic operators and new 
efficient termination condition improved the older versions and 
the given experimental results show its capability. Local-global 
approach for the GTSP is presented in [19]. A novel hybrid 
metaheuristic algorithm approach using genetic algorithms is 
described based on this approach. Computational results are 
reported and compared for Euclidean TSP-lib instances. 
Results show that the proposed hybrid algorithm leads to good 
solutions in a reasonable amount of time. Also, the consultant-
guided search technique with a local-global approach is 
combined by authors in [21] in order to solve efficiently the 
GTSP. They use candidate lists in order to reduce the search 
space and they introduce efficient variants of 2-opt and 3-opt 
local search in order to improve the solutions. Different local 
search implementations e.g. 2-opt, 3-opt, k-op and swap have 
been compared empirically by authors in [14]. An ensemble of 
discrete differential evolution algorithms with parallel 
populations is presented in [22]. In a single populated discrete 
differential evolution (DDE) algorithm, the destruction and 
construction (DC) procedure is employed to generate the 

mutant population whereas the trial population is obtained 
through a crossover operator. 

III. MATHEMATICAL FORMULATION 

Mathematical formulation will provide us the other aspect 
of the problem which will be an instrumental tool for 
pondering. Also the IP formulation can help us towards finding 
other powerful algorithms in future researches. By considering 
these facts, researchers try to present the exhaustive and easy to 
understand IP formulation. Six distinct formulations of the 
GTSP as an integer programming are described in [23]. These 
IP formulations are “compact” in the sense that the number of 
constraints and variables is a polynomial function of the 
number of nodes in the problem. In this paper, a new IP 
formulation is described. Symbols used in the presented 
mathematical model are as follows: 

m  : number of clusters 

in  : number of nodes in thi  cluster 1, ,i m   

M  : set of clusters  1, ,M m   

N  : number of nodes 
1

m
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By considering the cited symbols above, the mathematical 
model of the problem will be composed of one objective 
function and some constraints. After introducing the 
mathematical model, the descriptions about the objective 
function and constraints will be given. 

1 1 1 1

min  
i kn nm m

jkl jkl
i k j i

z ci xi
   

   

1

1     {1, 2,..., }
in

ij
j

y i m


     

1 1

  ,  {1,2,..., }, {1, 2,..., }
knm

ijkl ij i
k l

x y k i i m j n
 

       

1 1

  ,  {1,2,..., }, {1,2,..., }
inm

ijkl kl k
i j

x y k i k m l n
 

       

1 1

  ,  , {1, 2,..., }
i kn n

ijkl ik
j l

x z k i i k m
 

      

1    , ik
i s k s

z s M s
 

       



Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2260-2265 2262  
  

www.etasr.com Jafarzadeh et al.:  An Enhanced Genetic Algorithm for the Generalized Traveling … 
 

{0,1}ijy   

{0,1}ijklx   

{0,1}ikz    

Objective function shows the total cost of traveling that 
should be minimized. The first constraint emphasizes that 
exactly one node from each cluster should be chosen. The 
second and third constraints state that the maximum number of 
output and input arcs is one. The fourth and the fifth constraints 
ensure that there is not any sub-tour in travelled rout. And 
finally, last three definitions show that the used variables are 
Boolean. 

IV. GENETIC ALGORITHM APPROACH FOR GTSP 

In this section, the constructive sections of genetic 
algorithm and the quantity of the parameters for solving the 
GTSP are presented. The most suitable amount for these 
parameters has been found by trial and error. 

A. Chromosome Representation 
Figure 1 illustrates the bipartite chromosome that has been 

used. Assume that m, is the number of clusters and n1, n2, ….., 
nm represent the number of nodes in each cluster respectively. 
Let m=8, n1=3, n2=8, n3=3, n4=5, n5=6, n6=4, n7=6, n8=7. A 
possible solution is shown in Figure 1. The first row contains 
integers 1 to 8 that represents the sequence of clusters that have 
been visited by the traveling salesman. Numbers in the second 
row represent the city chosen from each cluster. 

 
5 7 3 2 4 8 1 6 
4 5 3 6 1 7 3 3 

Fig. 1.  Chromosome Representation 

So this chromosome suggests that the traveling salesman 
should start his trip by visiting the fourth city from the fifth 
cluster and after finishing his job should go to the fifth city 
from the seventh cluster. By using this type of chromosome, 
there will be m! ways to arrange numbers on the first row and 
there are also ni possible arrangements for the ith cluster. So, for 
a problem with m clusters and , {1, 2,..., }in i m   nodes in 

each cluster, the bipartite chromosome has 
1

! !
m

ii
m n

  

possible forms which are the size of the solution space. 

After computing the fitness of each chromosome, the 
algorithm directly passes chromosome of highest fitness value 
to the next generation. Therefore, the best solution is never lost. 
The fitness function plotted by the algorithm is always 
ascending type. 

B. Reproduction 
When a new population is created, the algorithm replaces 

10% of the worst solutions with a random population. This way, 
the diversity would be preserved and a larger area of the 
solution space would be covered.  

C. Crossover 
In this algorithm, a simplified Greedy Selection Crossover 

(GSX) operator is used. This operator is adapted for the 
bipartite. The major merits of this operator would be revealed 
in problems of a larger size. In this kind of cross over, a similar 
city is selected arbitrarily in both chromosomes. This city is put 
in the first gen of offspring. In these parents, we have two cities 
right next to the selected first gen. Their distance from the first 
gen is considered and the nearest one is selected as the second 
gen. We will do the described step for the third city etc. The 
function of this operator for TSP with per mutative 
chromosome coding is described thoroughly by [24]. 

D. Mutation 
An improving mutation operator is utilized in this 

algorithm. We know that an optimal path in this problem does 
not have any crossing segments, and mutation operator applies 
this theorem to promote the quality of the existing solutions. A 
random chromosome is picked, and each consecutive pair of its 
genes that makes a connecting line between two centers is 
analyzed for possible crossing with other pairs. If the algorithm 
finds such couple of pairs it exchanges those genes. 

 

 

 

 

3 2 4 7 1 5 6
4 5 3 6 1 7 3

3 5 1 7 4 2 6
4 7 1 6 3 5 3

 

Fig. 2.  Mutation 

E. Nearest Neighbor Search 
Nearest Neighbor Search (NNS) is an optimization problem 

for finding the closest points in metric spaces. The problem is:  

Pseudocode: Nearest Neighbor Search algorithm 

1. required c% a random chromosome 

2. 2 11 ( 1).[ ] 1m rand
 
         

 

3. Γ←[c(min(α,β):max(α,β))] 

4. L←zeros(β-α+1) % size of matrix zeros is (β-α+1) 

5. for i=1:β-α 

6. μ←∞ 

7. for j=i+1:β-α+1 

8.  2 2
( ) ( ) ( ) ( )( ) ( )i j i jx x y y         

9.   if (δ<μ) 

10   μ←δ 

11.   η←ξ 

12.  endif 
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13.  endfor 

14.  Λ(i)←Γ(η) 

15. endfor 

16. return Λ 

given a set of points in a metric space M and a query point 
q M , find the closest point in S to q. In this paper, NNS 
algorithm is used for promoting efficiency of GA for solving 
the GTSP. In the given pseudocode, c shows a sample 
chromosome from GA that is related randomly from the 
population. The algorithm generates two integer and random 
numbers (i.e. line 2) to pick a string of genes between them and 
then apply NNS on the extracted string. This string is showed 
by   in the third line. The improved string will be returned by 
  at the end of algorithm which has been pre-allocated in line 
4. In the provided loop, algorithm finds the closest point to the 
point that already exists in the . Then, it searches within the 
remaining points that have not been assigned yet, and it repeats 
these steps till reordering all the selected points as string  . 
The algorithm stops when (i) the best solution that has been 
obtained by algorithm, appears repeatedly in a specific number 
of iterations or (ii) when a specific number of iterations is 
performed. 

V. COMPUTATIONAL RESULTS 

The number of iterations to meet the first termination 
criterion was set to 250 and the second criterion will differ from 
problem to problem, the population size iteration was set to 60, 
the crossover rate was set to 85% and the mutation rate was set 
to 5%. In every case, the best solution was obtained in less than 
0.4 seconds. For investigating the efficiency of the proposed 
algorithm, standard test problems that are generated in [20] 
were solved and the results of them were collected in Tables I 
and II. Table I, presents the computational results in both terms 
of quality of solutions and CPU time. In Table II, the results of 
comparison between GA, Nearest Neighbor Search, GA+NNS 
and GK have been illustrated. GK is a state-of-the-art algorithm 
for solving the GTSP which is presented by [20]. “Problem” 
shows the standard test problem. “Best” presents the best 
known objective function value for each problem. “Best 
obtained value” is the objective value that proposed algorithm 
reached. “Opt” represents the number of trials that algorithm 
obtained the best known objective function value in 10 time 
runs. “Average” illustrates the mean of obtained tour length in 
10 time runs. “Err (%)” represents the relative error, where the 

relative error is calculated as: 100
Average OptErr

Opt


  .

 

TABLE I.  COMPUTATIONAL RESULTS: QUALITY OF SOLUTIONS AND TIME 

Problem Best Best obtained value Opt Average Err (%) CPU time 
10att48 5394 5394 10 5394 0.00 0.00 
11eil51 174 174 10 174 0.00 0.01 

12brazil53 15332 15332 10 15332 0.00 0.01 
14st70 316 316 10 316 0.00 0.01 
16eil76 209 209 10 209 0.00 0.01 
16pr76 64925 64925 10 64925 0.00 0.01 

20kroA100 9711 9711 10 9711 0.00 0.02 
20rat99 497 497 10 497 0.00 0.03 
20rd100 3650 3650 10 3650 0.00 0.03 
21eil101 249 249 10 249 0.00 0.02 
21lin105 8213 8213 10 8213 0.00 0.03 
22pr107 27898 27898 10 27898 0.00 0.04 
24gr120 2769 2769 10 2769 0.00 0.06 
25pr124 36605 36605 10 36605 0.00 0.07 

26bier127 74118 74118 10 74118 0.00 0.09 
28pr136 42570 42570 10 42570 0.00 0.09 
29pr144 45886 45886 10 45886 0.00 0.11 

30kroA150 11018 11018 9 11018 0.01 0.08 
31pr152 51576 51576 9 51576 0.01 0.16 
32u159 22664 22664 9 22671 0.02 0.19 

39rat195 854 854 10 854 0.00 0.24 
40d198 10557 10557 10 10557 0.00 0.24 

40kroA200 13406 13406 9 13406 0.01 0.36 
40kroB200 13111 13111 10 13111 0.00 0.30 

45ts225 68340 68340 8 68340 0.03 0.32 
46pr226 64007 64007 8 64012 0.04 0.51 
53gil262 1013 1013 9 1013 0.02 0.53 
53pr264 29549 29549 8 29549 0.04 0.49 
60pr299 22615 22615 7 22615 0.06 0.43 
64lin318 20765 20765 5 20774 0.09 0.88 
80rd400 6361 6361 8 6361 0.05 1.00 
84fl417 9651 9651 9 9651 0.02 1.22 
88pr439 60099 60099 6 60107 0.07 1.04 

89pcb442 21657 21657 3 21663 0.09 1.41 
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TABLE II.  COMPARING THE RESULT BETWEEN THE PROPOSED ALGORITHM AND GA AND NN 

Problem Best 
GA NNS GK GA+NNS 

Err (%) CPU time Err (%) CPU time Err (%) CPU time Err (%) CPU time 
10att48 5394 0.00 0 0.00 0.00 
11eil51 174 0.00 0.1 0.00 0.4 0.00 0.01 

12brazil53 15332 0.00 0.3 0.00 0.01 
14st70 316 0.00 0.2 0.00 0.8 0.00 0.01 
16eil76 209 0.00 0.2 0.00 1.1 0.00 0.01 
16pr76 64925 0.00 0.2 0.00 1.9 0.00 0.01 

20kroA100 9711 0.00 0.7 0.00 7.3 0.00 0.02 
20rat99 497 0.00 0.8 0.00 2.8 0.00 0.03 
20rd100 3650 0.00 0.3 0.80 8.3 0.00 0.03 
21eil101 249 0.00 0.2 0.40 3 0.00 0.02 
21lin105 8213 0.00 0.3 0.00 3.7 0.00 0.03 
22pr107 27898 0.00 0.4 0.00 5.2 0.00 0.04 
24gr120 2769 0.00 0.5 0.00 0.06 
25pr124 36605 0.00 0.6 0.00 12 0.00 0.07 

26bier127 74118 0.00 0.5 9.68 7.8 0.00 0.09 
28pr136 42570 0.00 0.5 5.54 9.6 0.00 0.09 
29pr144 45886 0.00 0.3 0.00 11.8 0.00 0.11 

30kroA150 11018 0.00 1.3 0.00 22.9 0.01 0.08 
31pr152 51576 0.00 1.5 1.80 10.3 0.01 0.16 
32u159 22664 0.00 0.6 2.79 26.5 0.02 0.19 

39rat195 854 0.00 0.7 1.29 86 0.00 0.24 
40d198 10557 0.00 1.2 0.60 118.8 0.00 0.14 0.00 0.24 

40kroA200 13406 0.00 2.7 5.25 53 0.00 0.14 0.01 0.36 
40kroB200 13111 0.00 1.4 0.00 135.2 0.00 0.16 0.00 0.30 

45ts225 68340 0.00 2.4 0.00 117.8 0.00 0.24 0.03 0.32 
46pr226 64007 0.00 1 2.17 67.6 0.00 0.1 0.04 0.51 
53gil262 1013 0.79 1.9 1.88 122.7 0.00 0.31 0.02 0.53 
53pr264 29549 0.00 1.3 5.73 147.2 0.00 0.24 0.04 0.49 
60pr299 22615 0.02 6.1 2.01 281.8 0.00 0.42 0.06 0.43 
64lin318 20765 0.00 3.5 4.92 317 0.00 0.45 0.09 0.88 
80rd400 6361 1.37 3.5 3.98 1137.1 0.00 1.07 0.05 1.00 
84fl417 9651 0.07 2.4 1.07 1341 0.00 0.73 0.02 1.22 
88pr439 60099 0.23 9.1 4.02 1238.9 0.00 1.48 0.07 1.04 

89pcb442 21657 1.31 10.1 0.22 838.4 0.00 1.72 0.09 1.41 

 

Finally, “CPU time” shows the elapsed time for obtaining 
the best solution. Which are the times until the termination 
criteria are satisfied. By considering the provided results for 
GA and NNS algorithm in Table II, it is inferable that the 
combination of these two algorithms has better performance in 
comparison with GA and NNS alone. Based on the results of 
Table I, the stability of presented algorithm is visible. In the 
“Err (%)” column the percentage of error for most instances is 
zero, and in the other ones this amount is nominal. Also, the 
“Opt” column clarifies that the algorithm reaches the best 
solution in most cases. 

VI. CONCLUSION 

In this paper, the formulation of the GTSP has been 
expanded, and a GA was combined with NNS for solving it. 
The proposed algorithm was tested on standard test problems 
and the results were collected in two tables. In most runs, the 
best solution was obtained at a minimum time. The proposed 
algorithm is proven to be efficient for solving GTSP, in terms 
of both the quality of obtained solutions and the least running 
time. To evaluate the performance of the presented algorithm, 
its results are compared with a state-of-the-art algorithm (GK) 

and the quality of results is satisfactory, and also its running 
time is better. 
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