
Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2260-2265 2260

www.etasr.com Jafarzadeh et al.: An Enhanced Genetic Algorithm for the Generalized Traveling …

An Enhanced Genetic Algorithm for the Generalized
Traveling Salesman Problem

Hassan Jafarzadeh
Department of Systems and

Information Engineering
University of Virginia

Charlottesville, Virginia, USA
hj2bh@virginia.edu

Nazanin Moradinasab
Department of Industrial

Engineering
Tarbiat Modares University

Tehran, Iran
nmn2ie@gmail.com

Milad Elyasi
Department of Industrial

Engineering
Ozyegin University

Istanbul, Turkey
milad.elyasi@ozu.edu.tr

Abstract—The generalized traveling salesman problem (GTSP)
deals with finding the minimum-cost tour in a clustered set of
cities. In this problem, the traveler is interested in finding the
best path that goes through all clusters. As this problem is NP-
hard, implementing a metaheuristic algorithm to solve the large
scale problems is inevitable. The performance of these algorithms
can be intensively promoted by other heuristic algorithms. In this
study, a search method is developed that improves the quality of
the solutions and competition time considerably in comparison
with Genetic Algorithm. In the proposed algorithm, the genetic
algorithms with the Nearest Neighbor Search (NNS) are
combined and a heuristic mutation operator is applied.
According to the experimental results on a set of standard test
problems with symmetric distances, the proposed algorithm finds
the best solutions in most cases with the least computational time.
The proposed algorithm is highly competitive with the published
until now algorithms in both solution quality and running time.

Keywords-genetic algorithms; traveling salesman; generalized;
nearest neighbor

I. INTRODUCTION

Genetic Algorithm (GA) is a search heuristic that mimics
the process of natural evolution [1]. This heuristic algorithm
(also sometimes called a metaheuristic) is routinely used to
generate useful solutions to optimization and search problems.
GAs belong to the larger class of evolutionary algorithms (EA),
which generate solutions to optimization problems using
techniques inspired by natural evolution, such as inheritance,
mutation, selection, and crossover. In a genetic algorithm, a
population of candidate solutions (called individuals, creatures,
or phenotypes) to an optimization problem is evolved toward
better solutions. Each candidate solution has a set of properties
(its chromosomes or genotype) which can be mutated and
altered [2]. The evolution usually starts from a population of
randomly generated individuals and is an iterative process, with
each iteration’s population called a generation. In each
generation, the fitness of every individual in the population is
evaluated. The fitness is usually the value of the objective
function in the optimization problem being solved. The more fit
individuals are stochastically selected from the current
population, and each individual’s genome is modified

(recombined and possibly randomly mutated) to form a new
generation. The new generation of candidate solutions is then
used in the next iteration of the algorithm. The algorithm
continues to run until one of the following criteria is met:

 A pre-defined fitness score is reached

 A specified number of iterations are completed or
alternatively, a set time limit is reached

 No improvement is achieved in a specified number of
iterations

The Generalized Traveling Salesman Problem (GTSP) is a
generalized version of the Traveling Salesman Problem (TSP).
In this problem, the cities are divided into a number of clusters
and the traveling salesman has to find the minimum-cost tour
which passes through exactly one city from each cluster.
Consider R which is formed by a set of nodes that has been
separated to m non-empty incompatible proper subsets:

1

m
ii

R v R N


  (1)

Each node has been connected by one or more arcs from E,
so that each arc connects two nodes from different clusters.

(,) i v , j v , i j i ji j E     in which R and E compose

 ,G R E , that represents the GTSP’s net. The shortest tour

that starts from one node of a cluster and passes through only
one node of every other clusters and finishes at the starting
point is desired.

II. LITERATURE REVIEW

The generalized form of TSP is called GTSP, and this
problem’s aim is optimizing the path between polygons instead
of the single nodes. Authors in [3, 4] studied precision
algorithms and theoretical approaches to solve this problem.
An integer linear program and also, exact and heuristic
separation procedure for some classes of facet-defining
inequalities, which are used within a branch-and-cut algorithm
for the exact solution of GTSP was proposed in [5]. In this
study the best objective values of the aforementioned paper
were used, in order to test the results of proposed algorithm.

Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2260-2265 2261

www.etasr.com Jafarzadeh et al.: An Enhanced Genetic Algorithm for the Generalized Traveling …

Authors in [6] developed an innovative algorithm for
minimizing airtime of a cutting tool. 3ρ/2 approximation
algorithm has been presented in [7], where ρ is the number of
cities in the largest cluster while the worst-case bound may be
weak, as ρ may be quite large. Another approximation
algorithm for the group Steiner tree problem has been proposed
in [8]. In both [7, 8], the triangle inequality must be satisfied.
Authors in [9] proposed an efficient innovative approach for
solving GTSP. In their method, random-key GA is combined
with a local tour improvement heuristic to improve the quality
of solutions and the time required for obtaining them. A
particle swarm optimization based algorithm was recently
developed as well by authors in [10]. Also, an ant colony
optimization (ACO) is used to solve GTSP in [11]. Authors in
[12] proposed a GA with several new features, including
isolated initial populations and a new reproduction mechanism
based on the TSP ordered crossover operator. This new
mechanism was called mrOX, for modified rotational ordered
crossover. Another way to solve the GTSP is to turn it into the
TSP [13]. The procedure of adaptation of a TSP neighborhood
for the GTSP has been formalized in [14]. Authors in [15]
proposed Memetic Algorithm to solve the GTSP where the
crossover operator relies on large neighborhood search. Their
main contribution was the originality of their crossover
procedure. The Lin–Kernighan heuristic is known to be a very
successful TSP one. A number of adaptations of Lin–
Kernighan for the GTSP are presented by authors in [14]. They
have discussed several approaches to adapt TSP local search
for the GTSP. Authors in [16] have extended the ant colony
optimization method from TSP to GTSP and based on the basic
extended ACO method, they have developed an improved
method by considering the group influence, besides a mutation
process and a local search technique, namely 2-OPT search has
been applied. Applications of the GTSP are also discussed in
[17]. A local-global approach for the generalized traveling
salesman problem and also an efficient algorithm for solving
the problem based on genetic algorithms is proposed in [18,
19]. A new memetic algorithm to solve the symmetric and
asymmetric instances of GTSP which is called GK is presented
by authors in [20]. Their new memetic algorithm due to
powerful local search, well-fitted genetic operators and new
efficient termination condition improved the older versions and
the given experimental results show its capability. Local-global
approach for the GTSP is presented in [19]. A novel hybrid
metaheuristic algorithm approach using genetic algorithms is
described based on this approach. Computational results are
reported and compared for Euclidean TSP-lib instances.
Results show that the proposed hybrid algorithm leads to good
solutions in a reasonable amount of time. Also, the consultant-
guided search technique with a local-global approach is
combined by authors in [21] in order to solve efficiently the
GTSP. They use candidate lists in order to reduce the search
space and they introduce efficient variants of 2-opt and 3-opt
local search in order to improve the solutions. Different local
search implementations e.g. 2-opt, 3-opt, k-op and swap have
been compared empirically by authors in [14]. An ensemble of
discrete differential evolution algorithms with parallel
populations is presented in [22]. In a single populated discrete
differential evolution (DDE) algorithm, the destruction and
construction (DC) procedure is employed to generate the

mutant population whereas the trial population is obtained
through a crossover operator.

III. MATHEMATICAL FORMULATION

Mathematical formulation will provide us the other aspect
of the problem which will be an instrumental tool for
pondering. Also the IP formulation can help us towards finding
other powerful algorithms in future researches. By considering
these facts, researchers try to present the exhaustive and easy to
understand IP formulation. Six distinct formulations of the
GTSP as an integer programming are described in [23]. These
IP formulations are “compact” in the sense that the number of
constraints and variables is a polynomial function of the
number of nodes in the problem. In this paper, a new IP
formulation is described. Symbols used in the presented
mathematical model are as follows:

m : number of clusters

in : number of nodes in thi cluster 1, ,i m 

M : set of clusters  1, ,M m 

N : number of nodes
1

m

i
i

N n


 

1 if node from cluster is chosen

0 o.w.

th th

ij
j i

y


 


1 if there is an arc from node from
 cluster to node from cluster

0 o.w.

th

th th th
ijkl

j
x i l k

 


the cost of traveling from node from cluster to
 node from cluste

r

 : th th

th th
ijkl j i

l k
c

1 if there is an arc from cluster to cluster

0 o.w.

th th

ik
i k

z


 


By considering the cited symbols above, the mathematical
model of the problem will be composed of one objective
function and some constraints. After introducing the
mathematical model, the descriptions about the objective
function and constraints will be given.

1 1 1 1

min
i kn nm m

jkl jkl
i k j i

z ci xi
   

 

1

1 {1, 2,..., }
in

ij
j

y i m


  

1 1

 , {1,2,..., }, {1, 2,..., }
knm

ijkl ij i
k l

x y k i i m j n
 

     

1 1

 , {1,2,..., }, {1,2,..., }
inm

ijkl kl k
i j

x y k i k m l n
 

     

1 1

 , , {1, 2,..., }
i kn n

ijkl ik
j l

x z k i i k m
 

    

1 , ik
i s k s

z s M s
 

    

Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2260-2265 2262

www.etasr.com Jafarzadeh et al.: An Enhanced Genetic Algorithm for the Generalized Traveling …

{0,1}ijy 

{0,1}ijklx 

{0,1}ikz 

Objective function shows the total cost of traveling that
should be minimized. The first constraint emphasizes that
exactly one node from each cluster should be chosen. The
second and third constraints state that the maximum number of
output and input arcs is one. The fourth and the fifth constraints
ensure that there is not any sub-tour in travelled rout. And
finally, last three definitions show that the used variables are
Boolean.

IV. GENETIC ALGORITHM APPROACH FOR GTSP

In this section, the constructive sections of genetic
algorithm and the quantity of the parameters for solving the
GTSP are presented. The most suitable amount for these
parameters has been found by trial and error.

A. Chromosome Representation
Figure 1 illustrates the bipartite chromosome that has been

used. Assume that m, is the number of clusters and n1, n2, …..,
nm represent the number of nodes in each cluster respectively.
Let m=8, n1=3, n2=8, n3=3, n4=5, n5=6, n6=4, n7=6, n8=7. A
possible solution is shown in Figure 1. The first row contains
integers 1 to 8 that represents the sequence of clusters that have
been visited by the traveling salesman. Numbers in the second
row represent the city chosen from each cluster.

5 7 3 2 4 8 1 6
4 5 3 6 1 7 3 3

Fig. 1. Chromosome Representation

So this chromosome suggests that the traveling salesman
should start his trip by visiting the fourth city from the fifth
cluster and after finishing his job should go to the fifth city
from the seventh cluster. By using this type of chromosome,
there will be m! ways to arrange numbers on the first row and
there are also ni possible arrangements for the ith cluster. So, for
a problem with m clusters and , {1, 2,..., }in i m  nodes in

each cluster, the bipartite chromosome has
1

! !
m

ii
m n



possible forms which are the size of the solution space.

After computing the fitness of each chromosome, the
algorithm directly passes chromosome of highest fitness value
to the next generation. Therefore, the best solution is never lost.
The fitness function plotted by the algorithm is always
ascending type.

B. Reproduction
When a new population is created, the algorithm replaces

10% of the worst solutions with a random population. This way,
the diversity would be preserved and a larger area of the
solution space would be covered.

C. Crossover
In this algorithm, a simplified Greedy Selection Crossover

(GSX) operator is used. This operator is adapted for the
bipartite. The major merits of this operator would be revealed
in problems of a larger size. In this kind of cross over, a similar
city is selected arbitrarily in both chromosomes. This city is put
in the first gen of offspring. In these parents, we have two cities
right next to the selected first gen. Their distance from the first
gen is considered and the nearest one is selected as the second
gen. We will do the described step for the third city etc. The
function of this operator for TSP with per mutative
chromosome coding is described thoroughly by [24].

D. Mutation
An improving mutation operator is utilized in this

algorithm. We know that an optimal path in this problem does
not have any crossing segments, and mutation operator applies
this theorem to promote the quality of the existing solutions. A
random chromosome is picked, and each consecutive pair of its
genes that makes a connecting line between two centers is
analyzed for possible crossing with other pairs. If the algorithm
finds such couple of pairs it exchanges those genes.

3 2 4 7 1 5 6
4 5 3 6 1 7 3

3 5 1 7 4 2 6
4 7 1 6 3 5 3

Fig. 2. Mutation

E. Nearest Neighbor Search
Nearest Neighbor Search (NNS) is an optimization problem

for finding the closest points in metric spaces. The problem is:

Pseudocode: Nearest Neighbor Search algorithm

1. required c% a random chromosome

2. 2 11 (1).[] 1m rand
 
         

3. Γ←[c(min(α,β):max(α,β))]

4. L←zeros(β-α+1) % size of matrix zeros is (β-α+1)

5. for i=1:β-α

6. μ←∞

7. for j=i+1:β-α+1

8. 2 2
() () () ()() ()i j i jx x y y       

9. if (δ<μ)

10 μ←δ

11. η←ξ

12. endif

Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2260-2265 2263

www.etasr.com Jafarzadeh et al.: An Enhanced Genetic Algorithm for the Generalized Traveling …

13. endfor

14. Λ(i)←Γ(η)

15. endfor

16. return Λ

given a set of points in a metric space M and a query point
q M , find the closest point in S to q. In this paper, NNS
algorithm is used for promoting efficiency of GA for solving
the GTSP. In the given pseudocode, c shows a sample
chromosome from GA that is related randomly from the
population. The algorithm generates two integer and random
numbers (i.e. line 2) to pick a string of genes between them and
then apply NNS on the extracted string. This string is showed
by  in the third line. The improved string will be returned by
 at the end of algorithm which has been pre-allocated in line
4. In the provided loop, algorithm finds the closest point to the
point that already exists in the . Then, it searches within the
remaining points that have not been assigned yet, and it repeats
these steps till reordering all the selected points as string  .
The algorithm stops when (i) the best solution that has been
obtained by algorithm, appears repeatedly in a specific number
of iterations or (ii) when a specific number of iterations is
performed.

V. COMPUTATIONAL RESULTS

The number of iterations to meet the first termination
criterion was set to 250 and the second criterion will differ from
problem to problem, the population size iteration was set to 60,
the crossover rate was set to 85% and the mutation rate was set
to 5%. In every case, the best solution was obtained in less than
0.4 seconds. For investigating the efficiency of the proposed
algorithm, standard test problems that are generated in [20]
were solved and the results of them were collected in Tables I
and II. Table I, presents the computational results in both terms
of quality of solutions and CPU time. In Table II, the results of
comparison between GA, Nearest Neighbor Search, GA+NNS
and GK have been illustrated. GK is a state-of-the-art algorithm
for solving the GTSP which is presented by [20]. “Problem”
shows the standard test problem. “Best” presents the best
known objective function value for each problem. “Best
obtained value” is the objective value that proposed algorithm
reached. “Opt” represents the number of trials that algorithm
obtained the best known objective function value in 10 time
runs. “Average” illustrates the mean of obtained tour length in
10 time runs. “Err (%)” represents the relative error, where the

relative error is calculated as: 100
Average OptErr

Opt


  .

TABLE I. COMPUTATIONAL RESULTS: QUALITY OF SOLUTIONS AND TIME

Problem Best Best obtained value Opt Average Err (%) CPU time
10att48 5394 5394 10 5394 0.00 0.00
11eil51 174 174 10 174 0.00 0.01

12brazil53 15332 15332 10 15332 0.00 0.01
14st70 316 316 10 316 0.00 0.01
16eil76 209 209 10 209 0.00 0.01
16pr76 64925 64925 10 64925 0.00 0.01

20kroA100 9711 9711 10 9711 0.00 0.02
20rat99 497 497 10 497 0.00 0.03
20rd100 3650 3650 10 3650 0.00 0.03
21eil101 249 249 10 249 0.00 0.02
21lin105 8213 8213 10 8213 0.00 0.03
22pr107 27898 27898 10 27898 0.00 0.04
24gr120 2769 2769 10 2769 0.00 0.06
25pr124 36605 36605 10 36605 0.00 0.07

26bier127 74118 74118 10 74118 0.00 0.09
28pr136 42570 42570 10 42570 0.00 0.09
29pr144 45886 45886 10 45886 0.00 0.11

30kroA150 11018 11018 9 11018 0.01 0.08
31pr152 51576 51576 9 51576 0.01 0.16
32u159 22664 22664 9 22671 0.02 0.19

39rat195 854 854 10 854 0.00 0.24
40d198 10557 10557 10 10557 0.00 0.24

40kroA200 13406 13406 9 13406 0.01 0.36
40kroB200 13111 13111 10 13111 0.00 0.30

45ts225 68340 68340 8 68340 0.03 0.32
46pr226 64007 64007 8 64012 0.04 0.51
53gil262 1013 1013 9 1013 0.02 0.53
53pr264 29549 29549 8 29549 0.04 0.49
60pr299 22615 22615 7 22615 0.06 0.43
64lin318 20765 20765 5 20774 0.09 0.88
80rd400 6361 6361 8 6361 0.05 1.00
84fl417 9651 9651 9 9651 0.02 1.22
88pr439 60099 60099 6 60107 0.07 1.04

89pcb442 21657 21657 3 21663 0.09 1.41

Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2260-2265 2264

www.etasr.com Jafarzadeh et al.: An Enhanced Genetic Algorithm for the Generalized Traveling …

TABLE II. COMPARING THE RESULT BETWEEN THE PROPOSED ALGORITHM AND GA AND NN

Problem Best
GA NNS GK GA+NNS

Err (%) CPU time Err (%) CPU time Err (%) CPU time Err (%) CPU time
10att48 5394 0.00 0 0.00 0.00
11eil51 174 0.00 0.1 0.00 0.4 0.00 0.01

12brazil53 15332 0.00 0.3 0.00 0.01
14st70 316 0.00 0.2 0.00 0.8 0.00 0.01
16eil76 209 0.00 0.2 0.00 1.1 0.00 0.01
16pr76 64925 0.00 0.2 0.00 1.9 0.00 0.01

20kroA100 9711 0.00 0.7 0.00 7.3 0.00 0.02
20rat99 497 0.00 0.8 0.00 2.8 0.00 0.03
20rd100 3650 0.00 0.3 0.80 8.3 0.00 0.03
21eil101 249 0.00 0.2 0.40 3 0.00 0.02
21lin105 8213 0.00 0.3 0.00 3.7 0.00 0.03
22pr107 27898 0.00 0.4 0.00 5.2 0.00 0.04
24gr120 2769 0.00 0.5 0.00 0.06
25pr124 36605 0.00 0.6 0.00 12 0.00 0.07

26bier127 74118 0.00 0.5 9.68 7.8 0.00 0.09
28pr136 42570 0.00 0.5 5.54 9.6 0.00 0.09
29pr144 45886 0.00 0.3 0.00 11.8 0.00 0.11

30kroA150 11018 0.00 1.3 0.00 22.9 0.01 0.08
31pr152 51576 0.00 1.5 1.80 10.3 0.01 0.16
32u159 22664 0.00 0.6 2.79 26.5 0.02 0.19

39rat195 854 0.00 0.7 1.29 86 0.00 0.24
40d198 10557 0.00 1.2 0.60 118.8 0.00 0.14 0.00 0.24

40kroA200 13406 0.00 2.7 5.25 53 0.00 0.14 0.01 0.36
40kroB200 13111 0.00 1.4 0.00 135.2 0.00 0.16 0.00 0.30

45ts225 68340 0.00 2.4 0.00 117.8 0.00 0.24 0.03 0.32
46pr226 64007 0.00 1 2.17 67.6 0.00 0.1 0.04 0.51
53gil262 1013 0.79 1.9 1.88 122.7 0.00 0.31 0.02 0.53
53pr264 29549 0.00 1.3 5.73 147.2 0.00 0.24 0.04 0.49
60pr299 22615 0.02 6.1 2.01 281.8 0.00 0.42 0.06 0.43
64lin318 20765 0.00 3.5 4.92 317 0.00 0.45 0.09 0.88
80rd400 6361 1.37 3.5 3.98 1137.1 0.00 1.07 0.05 1.00
84fl417 9651 0.07 2.4 1.07 1341 0.00 0.73 0.02 1.22
88pr439 60099 0.23 9.1 4.02 1238.9 0.00 1.48 0.07 1.04

89pcb442 21657 1.31 10.1 0.22 838.4 0.00 1.72 0.09 1.41

Finally, “CPU time” shows the elapsed time for obtaining
the best solution. Which are the times until the termination
criteria are satisfied. By considering the provided results for
GA and NNS algorithm in Table II, it is inferable that the
combination of these two algorithms has better performance in
comparison with GA and NNS alone. Based on the results of
Table I, the stability of presented algorithm is visible. In the
“Err (%)” column the percentage of error for most instances is
zero, and in the other ones this amount is nominal. Also, the
“Opt” column clarifies that the algorithm reaches the best
solution in most cases.

VI. CONCLUSION

In this paper, the formulation of the GTSP has been
expanded, and a GA was combined with NNS for solving it.
The proposed algorithm was tested on standard test problems
and the results were collected in two tables. In most runs, the
best solution was obtained at a minimum time. The proposed
algorithm is proven to be efficient for solving GTSP, in terms
of both the quality of obtained solutions and the least running
time. To evaluate the performance of the presented algorithm,
its results are compared with a state-of-the-art algorithm (GK)

and the quality of results is satisfactory, and also its running
time is better.

REFERENCES
[1] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press,

1998

[2] D. Whitley, “A genetic algorithm tutorial”, Statistics and
Computing, Vol. 4, No. 2, pp. 65–85, 1994

[3] G. Laporte, Y.Nobert, “Generalized traveling salesman problem
through n-sets of nodes–An integer programming approach”,
Information Systems and Operational Research, Vol. 21, No. 1, pp.
61-75, 1983

[4] G. Laporte, H. Mercure, Y. Nobert, “Finding the shortest
Hamiltonian circuit through n clusters: a lagrangean relaxation
approach”, Gongressus Numerantium, Vol. 48, pp. 277-290, 1985

[5] M. Fischetti, J. J. S. Gonzalez, P. Toth, “A Branch-and-cut
Algorithm for the symmetric Generalized Traveling Salesman
Problem”, Operations Research, Vol. 45, No. 3, pp. 378-394, 1997

[6] K. Castelino, R. D'Souza, P. K. Wright, “Tool-path optimization
for minimizing airtime during machining”, Journal of
Manufacturing Systems, Vol. 22, No. 3, 173-180, 2002

[7] P. Slavik, “On the approximation of the generalized traveling
salesman problem”, Rapport technique, Department of Computer
Science, 1997

Engineering, Technology & Applied Science Research Vol. 7, No. 6, 2017, 2260-2265 2265

www.etasr.com Jafarzadeh et al.: An Enhanced Genetic Algorithm for the Generalized Traveling …

[8] N. Garg, G. Konjevod, R. Ravi, “A poly logarithmic
approximation algorithm for the group Steiner tree problem”,
Journal of Algorithms, Vol. 37, No. 1, pp. 66–84, 2000

[9] L. Snyder, M. S. Daskin, “A random-key genetic algorithm for the
generalized traveling salesman problem”, European journal of
operational research, Vol. 174, pp. 38-54, 2006

[10] X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu, Q. X. Wang, “Particle
swarm optimization-based algorithms for TSP and generalized
TSP”, Information Processing Letters; Vol. 103, No. 5, pp. 169–
76, 2007

[11] K. Jun-man, Z. Yi, “Application of an Improved Ant Colony
Optimization on Generalized Traveling Salesman Problem”,
Energy Procedia, Vol. 17, Part A, pp. 319-325, 2012

[12] J. Silberholz, B. Golden, “The generalized traveling salesman
problem: a new genetic algorithm approach”, Extending the
Horizons: Advances in Computing, Optimization and Decision
Technologies, pp. 37:165–81, 2007

[13] V. Dimitrijevic, Z. Saric, “An efficient transformation of the
generalized traveling salesman problem into the traveling salesman
problem on digraphs”, Information Sciences, Vol. 102, No. 1-4,
pp.105-110, 1997

[14] D. Karapetyan, G. Gutin, “Efficient local search algorithms for
known and new neighborhoods for the generalized traveling
salesman problem”, European Journal of Operational Research,
Vol. 219, No. 2, pp. 234-251, 2012

[15] B. Bontoux, C. Artigues, Dominique Feillet, “A Memetic
Algorithm with a large neighborhood crossover operator for the
Generalized Traveling Salesman Problem”, Computers&
Operations Research, Vol. 37, No. 11, pp. 1844-1852, 2010

[16] J. H. Yang, X. H. Shi, M. Marchese, “An ant colony optimization
method forgeneralized TSP problem”, Progress in Natural Science,
Vol. 18, No. 11, pp. 1417–1422, 2008

[17] G. Laporte, A. Asef-Vaziri, C. Sriskandarajah, “Some applications
of the generalized traveling salesman problems”, Journal of the
Operational Research Society, Vol. 47, No. 12, pp. 1461-1467,
1996

[18] O. Matei, P.C. Pop, “An efficient genetic algorithm for solving the
generalized traveling salesman problem”, 6th IEEE International
Conference on Intelligent Computer Communication and
Processing, pp. 87-92, 2010

[19] P. C. Pop, O. Matei, C. Sabo, “A new Approach for Solving the
Generalized Traveling Salesman Problem”, HM 2010, Lecture
Notes in Computer Science, Vol. 6373, pp. 62-72, 2010

[20] G. Gutin, D. Karapetyan, “A Memetic Algorithm for the
Generalized Traveling Salesman Problem”, Natural Computing,
Vol. 9, No. 1, pp. 47-60, 2010

[21] P. C. Pop, S.Lordache, “A Hybrid Heuristic Approach for Solving
the Generalized Traveling Salesman Problem”, GECCO,
Association for Computing Machinery, pp.481-488, 2011

[22] M. Fatih Tasgetiren, P. N. Suganthan, Q. K. Pan, “An ensemble of
discrete differential evolution algorithms for solving the
generalized traveling salesman problem”, Applied Mathematics
and Computation, Vol. 215, No.9, pp. 3356–3368, 2010

[23] P. C. Pop, “New Integer Programming Formulations of the
Generalized Traveling Salesman Problem”, American Journal of
Applied Sciences, Vol. 4, No. 11, pp. 932-937, 2007

[24] L. Qu, R, Sun, A” synergetic approach to genetic algorithm for
solving traveling salesman problem”, Information Sciences, Vol.
117, No. 3-4, pp. 267-283, 1999

