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Abstract—Power systems include multiple units linked together to 
produce constantly moving electric power flux. Stability is very 
important in power systems, so controller systems should be 
implemented in power plants to ensure power system stability 
either in normal conditions or after the events of unwanted 
inputs and disorder. Frequency and active power control are 
more important regarding stability. Our effort focused on 
designing and implementing robust PID and PI controllers based 
on genetic algorithm by changing the reference of generating 
units for faster damping of frequency oscillations. 
Implementation results are examined on two-area power system 
in the ideally state and in the case of parameter deviation. 
According to the results, the proposed controllers are resistant to 
deviation of power system parameters and governor 
uncertainties. 
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I. INTRODUCTION  

A power system includes multiple power plant units 
constantly connected to each other while power flux is moving 
among them. Power systems should be operated in such a way 
that they remain stable or return to stable condition as soon as 
possible. If the power system frequency -which is equal to the 
frequency of production units electrical power output- is 
deviated, this leads to a difference between the speed of stator 
and rotor rotating magnetic fields in the air gap of synchronous 
generators. If this difference is low or quickly eliminated, 
synchronous generator remains in stable condition but if this 
difference becomes greater, the rotating magnetic fields will 
not be stable in the coupled state. Any synchronous generator 
output power in the production unit will be injected into the 
power system. Following this, the load of generator will be 
eliminated. So, rotational speed of rotor shaft will suddenly 
increase, which is probable to cause damage like cracks in the 
rotor or even total destruction of the power system stability. So, 
frequency of different areas and the power flux between them 
can be considered as fundamental stability factors in a power 
system. When load increases, the turbine speed will be 
reduced. As long as governor coordinates input vapor with new 
load, speed reduction may lead the power system to instability. 
Load Frequency Control (LFC) problem is a way to restore 
nominal values of frequency by adding PI or PID controllers as 
supplementary controller system.  

II. LOAD FREQUENCY CONTROL 

Since real power (P) with frequency (f) and reactive power 
(Q) with voltage amplitude (|V|) are associated, by considering 
the importance of keeping frequency and voltage amplitude at 
desirable level, control of real and reactive power is very 
important. As noted, for a power system to perform in 
favorable state it is necessary for the frequency to remain 
constant. In order to maintain frequency stability it is necessary 
to prevent deviation in the outflow of production units. 
However, since power in a power system is supplied by a large 
number of generators, it is necessary the extra power requested 
to be divided appropriately among production units. Main 
speed control in each production unit is performed by 
governor. In other words, governor is the primary frequency 
controller. Higher control process is performed by other 
controllers added to the system as supplementary controllers. 
This process is called load frequency control (LFC). 

III. BACKGROUND AND SOLVING METHODS TAKEN FOR LFC 

PROBLEM 

Several attempts to solve LFC problem have been carried 
out. The installation of photovoltaic (PV) in [1] and possible 
uncertainties caused by time delays in [2] can be mentioned. In 
[3] complex and nonlinear parameters of a decentralized LFC 
problem have been inspected. In [4] authors designed a 
differential controller based on fuzzy logic to solve the LFC 
problem in a restructured environment. In [5] the problem is 
solved using a method called SOA. In order to solve LFC 
problem PID controllers based on genetic algorithm are used. 
In [6] a two-stage controller which prevents disorders from 
entering the power system is proposed. LFC solving methods 
are divided into following categories. 

A. Classic Controller 

In this method, error signal is based on the integrated 
control error. In the classical approach, to reach desirable gain 
margin (Km) and phase margin (φm) in Bode plot, Nyquist 
curve is used as reference locus. This controller is simple to 
implement but according to the results obtained in [7], power 
systems containing this controller have poor dynamic 
performance. 
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