
Engineering, Technology & Applied Science Research Vol. 8, No. 2, 2018, 2673-2679 2673  
  

www.etasr.com Chakravorty et al.: Analysis of a DVR with Molten Carbonate Fuel Cell and Fuzzy Logic Control 
 

Analysis of a DVR with Molten Carbonate Fuel Cell 
and Fuzzy Logic Control 

 

Jaydeep Chakravorty 
Electrical Engineering Department 

Indus University 
Ahmedabad, India 

Geena Sharma 
Electrical Engineering Department 

Baddi University 
Himachal Pradesh, India 

Vinay Bhatia 
Electrical & Electronics Engineering 

Department, Baddi University 
Himachal Pradesh India 

 

 

Abstract—As power demand constantly (and rapidly) increases 
and with the introduction of many sophisticated electronic 
devices, power quality issues are becoming a major problem for 
the power sector. In this context, issues of power quality, voltage 
swells and sags have become rather common. Custom power 
devices are generally used to solve this problem. A dynamic 
voltage restorer (DVR) is the most efficient and effective modern 
custom power device used in power distribution networks. In this 
paper a new DVR model is presented. The proposed DVR has a 
molten carbonate fuel cell (MCFC) as its DC source of supply 
with an ultra-capacitor along with a fuzzy controller as its 
controlling unit. The complete model is implemented in 
MATLAB/SIMULINK and the output of the proposed model is 
compared with conventional DVR model with a simple DC 
voltage source and a capacitor with the same fuzzy controller 
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I. INTRODUCTION 

As the complexity of power systems increases, voltage 
swells and sags are becoming common issues. A dynamic 
voltage restorer (DVR) is considered an economical and very 
effective device to improve the voltage swell and sag in the 
system [1, 2]. DVRs are a class of custom power devices for 
providing reliable distribution power quality. They employ a 
series of voltage boost technology using solid state switches for 
compensating voltage sags/swells. DVRs are mainly used to 
protect for sensitive loads that may be drastically affected by 
fluctuations in system voltage. A DVR gives good result when 
used in the case of low or medium voltage distribution [3, 4]. 
Other than voltage sags and swells compensation, a DVR can 
also add other features like: line voltage harmonics 
compensation, reduction of transients in voltage and fault 
current limitations. In this paper a new DVR model 
implemented in MATALB/SIMULINK is presented. The 
proposed DVR employs a molten carbonate fuel cell (MCFC) 
as its DC source of supply with an ultra-capacitor along with a 
fuzzy controller as its controlling unit. The model’s behavior is 
investigated and compared to a more conventional DVR 
model. 

II. MOLTEN CARBONATE FUEL CELL  

The schematic model of a Molten Carbonate Fuel Cell 
(MCFC) is shown in Figure 1. A fuel cell converts chemical 
energy into electrical energy. In the MCFC, the CO2 gas moves 

from cathode to anode through a molten electrolyte. Here 
molten carbonate salt acts as an electrolyte where two porous 
electrodes are present. The electrode layer is formed in sub 
layers. Between the gas and the electrode a thin porous metal 
plate is inserted acting as a diffuser, it helps in helping the gas 
mixture to enter the porous electrode. When the CO2 combines 
with O2 in the cathode gives carbonate ions and when it 
combines with hydrogen in the anode side it gives CO2 and 
H2O. So there will be a movement of electrolyte from anode 
side to the cathode side. The gas reaction at the anode side is ܱܥ + ଶܱܪ ↔ ଶܱܥ +     (1)	ଶܪ

The electrochemical half reaction is ܪଶ + ଷିܱܥ ି ↔ ଶܱܥ + ଶܱܪ + 2݁	  (2) 

Similarly the equation of cathode side will be ଵଶܱଶ + ଶܱܥ + 2݁ ↔ ଷିܱܥ ି		   (3) 

The equivalent electrical circuit of a singular cell MCFC is 
shown in Figure 2 [5], where, Ri is the ionic resistance, Re is 
the electronic resistance and Rload is the external load 
resistance. Electrically, a single cell acts as the parallel of 
elementary real generators, each of which is a fraction of the 
cell thickness from anode to the cathode. If the fuel cell is 
having generic (N, k) strip, where, N=1,2,………. NchA and 
k=1,2,……..Nchc) then the total current flow and also the 
potential difference is given by: ݅௟௢௔ௗ = ∑ ݅ே,௞	ே௖௛௔,ே௖௛௖ேୀଵ,௞ୀଵ 			   (4) 

௢ܸ௨௧ = ܧ − ݅ே.௞ × ܴ௟௢௔ௗ = ݅௟௢௔ௗ × ܴ௟௢௔ௗ		 (5)	
where, E is the Nernst voltage of (N,k) strip, and is given by: ܧ = ଴ܧ + ோ்ଶி ݈݊ ቀ௉ಹమ௉బమబ.ఱ௉ಹమೀ × ஼ܲைଶቁ		  (6) 

where, E0 is the standard condition potential and the neutral 
component concentrations refer to the gas diffused into the 
liquid electrolyte.  Single cell voltage is given by (7) [5]: 

௖ܸ = ா೘ିఎ೑×௜೘×ோ೔ೃ೔ೃ೐×൫ଵିఎ೑൯ାଵ = ௥ܧ − ௔ߤ)݅ + ௖ߤ +   (7)	௢)ߤ
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