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Abstract—In this paper, a new method for frequency estimation 
of irregularly sampled data is proposed. In comparison with the 
previous sparsity-based methods where the sparsity constraint is 
applied to a least-squares fitting problem, the proposed method is 
based on a sparsity constrained weighted least-squares problem. 
The resulting problem is solved in an iterative manner, allowing 
the usage of the solution obtained at each iteration to determine 
the weights of the least-squares fitting term at the next iteration. 
Such an appropriate weighting of the least-squares fitting term 
enhances the performance of the proposed method. Simulation 
results verify that the proposed method can detect the spectral 
peaks using a very short data record. Compared to the previous 
one, the proposed method is less probable to miss the actual 
spectral peaks and exhibit spurious peaks. 

Keywords-basis pursuit; sparse representation; overcomplete 
dictionaries; irregular sampling; spectrum estimation  

I. INTRODUCTION 

Spectral analysis of irregularly sampled data is ubiquitous 
in science and technology. The range of applications for this 
branch of signal processing includes, among others, the 
estimation of Doppler frequency in radars [1], astronomical 
data analysis [2], the analysis of the heart rate variability in 
medical sciences [3] and turbulent velocity analysis in 
measurement systems [4]. 

Let us denote by [ ]1 2

T

�
y y y=y ⋯ the data-set taken at 

� sampling time instants [ ]1 2
.

T

�
t t t=t ⋯ The frequency 

grid on which the spectrum is to be computed is denoted by 

[ ]0 11

T

M M
f f f f f− −

=f ⋯ ⋯   (1) 

with 

max ,  , ,m

m
f f m M M

M
= = − …   (2) 

for a predefined maximum frequency
maxf .  

Also let us define an overcomplete dictionary of complex 
exponentials which is a � K× matrix defined as: 

( )1
exp 2

T

j
�

π=W tf    (3) 

where 2 1K M= + , K �> , and ( )exp A for matrix A is 

defined as a matrix of the same size as A with elements 
computed as the exponential of the corresponding elements in 

A. From (3) it can be inferred that the m
th

 column of W is a 

complex exponential function of frequency
mf sampled at the 

sampling instants t. 

When the data set is known to be sinusoidal (which is the 
case for most applications), one of the most powerful 
techniques of spectrum estimation is to represent the data-

set y as a linear combination of the columns of W ; i.e. to 

obtain a vector ŝ  so that ˆ.=y Ws . If so, the nonzero elements 

of ŝ  demonstrate the amplitude of the spectral components at 

corresponding frequencies in .f  Redundancy of W gives rise 

to infinitely many solutions ŝ  which opens the way to 

enforcing some more constraints to the solution. The simplest 
of them are the least-squares fitting methods; e.g. the Lomb-
Scargle periodogram [5]. More sophisticated methods penalize 
the least-squares fitting term with a sparsity-enforcing term [6-
8]. 

In [2, 9-10], the sparsity constraint is formulated as the 
1ℓ  

norm of the solution. This method is widely known in the 
literature as Basis Pursuit [11]. These methods are capable to 
estimate the spectral lines from very limited data records and 
allow super-resolution frequency estimation [9-10]. In [9], the 

dictionary W  is defined as a collection of cisoids instead of 

complex exponentials. It is shown in [2, 10] that sparse 
approximation in the complex exponential dictionary 
outperforms the method of [9]. In this paper, we zoom in on the 
method of [10] which is the most recent amongst the above 
methods. 

The sparse approximation of y  in W  is the solution to the 

following optimization problem [12]: 

( )2

1
argˆ min

K

λ
∈

= − +
s

y Wss s
C

  (4) 

where λ is called the regularization parameter and 
1

s  is the 

norm of s  defined as: 



ETASR - Engineering, Technology & Applied Science Research Vol. 3, �o. 1, 2013, 368-372 369  
  

www.etasr.com Zahedi and Kahaei: Frequency Estimation of Irregularly Sampled Data Using a Sparsity Constrained… 
  

 

1
1

K

i

i

s
=

=∑s    (5) 

The cost function in (4) is the sum of two terms. The first 
one enforces the least squares fitting of the solution to the data 
set, and the second one guarantees the sparsity of the solution. 
This problem can be solved in polynomial time using a variety 

of methods [10]. It has been shown in [10] that if ŝ  is a 

solution to (5) and 
0

ˆ 2�<s  (where 
0

ŝ  counts the number 

of nonzero elements in ˆ),s then it is the unique sparsest 

solution.  

Roughly speaking, the minimizer of (4) is a sparse vector 

0 11
ˆ ˆ ˆ ˆ ˆ ˆ

T

M Ms s s s s− −=   s ⋯ ⋯  so that ˆWs  fits to the 

data-set in the least-squares sense. ˆ
ms  is thus an estimation of 

the amplitude of the signal component at frequency mf . 

Problem (4) is known in the literature as Basis Pursuit De-
Noising (BPDN) [10, 11]. 

In this paper, instead of the sparsity constrained least-
squares problem of (4), another cost function is proposed which 
can be interpreted as a sparsity constrained weighted least-
squares problem, and is solved iteratively. In order to refine the 
fitting to the data-set, in each iteration the obtained temporary 
solution is utilized to weight the least-squares term in the next 
iteration. Since the proposed sparsity-based method solves a 
weighted least-squares problem in an iterative manner, it falls 
into the class of methods named Iterative Adaptive Approach 
(IAA) [13-15].  

This paper is organized as follows: In Section II, the 
proposed method is described in detail. In Section III, the 
proposed method is compared to the BPDN method of [10] 
formulated in (4) using simulation results. The paper is 
concluded in Section IV.  

II. PROPOSED METHOD 

A. Problem Formulation 

Problem (4) can be rewritten in the following component-
wise form: 

( )2

1
argmin ,    , ,ˆ

m

m
s

m M Ms λ
∈

= − + = −y Ws s …
C

    (6) 

The Iterative Coordinate Descent (ICD) method described 
in [10] can be used to solve this scalar problem considering the 
following equivalence: 

( ) ( )1

2
argmin     ˆ ˆ  

m

H

m m m m
s

s s λλ φ
∈

= − + ⇔ =y s wWs e
C

    (7) 

where 
mw  is the m

th
 column of W,

me  is defined as: 

m m ms= − +e y Ws w    (8) 

and for any complex number jx x e θ=  the complex soft 

shrinkage function ( )xλφ  is defined as [10]: 

( ) ( ) ,   if  

0,   otherwise

j
x e x

x

θ

λ

λ λ
φ

 − >
= 


  (9) 

It is necessary to mention again that the cost function in (6) 

is sum of two terms: a least-squares data-fitting term 
2

−y Ws  

and a sparsity enforcing 
1ℓ  norm term 

1
s . The value of the 

regularization parameter λ  determines the relative emphasis 

on each one of these two terms. A large λ  should be 

interpreted as a tendency to obtain a very sparse solution, while 
with a small λ  the sparsity of the solution is sacrificed in favor 

of its fidelity to the data-set. The regularization parameter 
therefore makes a trade-off between the two important 
parameters of sparsity and fidelity to the data-set. The level of 
this trade-off is improved by increase of the number of data 
samples �. When � is large enough, the solution to (6) can be 
both sparse and fitted to the data set. The question is that if � is 
limited, is it possible to somehow improve the trade-off level? 
One possible answer is to be “parsimonious” in spending the 
recourses on minimization of the cost function by “wise” fitting 
to the data-set; i.e., by using a weighted least-squares fitting to 
the data-set instead of the simple least-squares.  

Let us temporarily assume that for a specific 

m ( )M m M− ≤ ≤ , the solution ˆ
rs  to the optimization problem 

is available for all ( ) .r m M r M≠ − ≤ ≤  Inspired by [13], we 

define the covariance matrix for the m
th
  component of ŝ  as: 

2

,

ˆ
M

H

m r r r

r mr M

s
= ≠−

′ = ∑Q a a   (10) 

where 
ra is defined as: 

( )exp 2r rj fπ=a t   (11) 

For any nonzero vector �∈u ℂ  we have: 

2

,

2 2

,

ˆ ˆ 0
H H

M M
H H

r r rm

r M r

r r

r m r mM

s s
=− =−≠ ≠

′ = = ≥∑ ∑a a au Q u u u u . 

Thus 
m
′Q  is nonnegative definite. Notice that according to 

(10), 
m
′Q  is the sum of 2M matrices H

r ra a each of which of rank 

1, and weighted by 
2

ˆ .rs Since the number of nonzero 

components of ŝ  is 
0

ŝ , m
′Q  is the sum of 

0
ŝ  or ( )0

ˆ 1−s  

rank 1 matrices (depending on the two different possibilities 

ˆ 0ms =  and ˆ 0ms ≠ ). The matrix thus has the following rank: 

( )

0

0 0

0

0 0

ˆ,    if 0 and 1

ˆ ˆ1,    if 0 and 1

ˆ,    if 0 and 

ˆ ˆ,    if 0 and 

m

m

m

m

m

� s �

s �
rnk

� s �

s �

′ ≠ − ≥


′− ≠ − <
= 

′ = ≥
 ′ = <

′

s

s s

s

s s

Q  (12) 

Therefore, it may or may not be of full-rank. Specially, 

since ŝ  is expected to be sparse, the 2
nd

 and 4
th

 cases of the 



ETASR - Engineering, Technology & Applied Science Research Vol. 3, �o. 1, 2013, 368-372 370  
  

www.etasr.com Zahedi and Kahaei: Frequency Estimation of Irregularly Sampled Data Using a Sparsity Constrained… 
  

 

above relation are likely to happen. The following is a revised 
definition of the covariance matrix which has full-rank:  

2

,

ˆ
M

H

m r r r m

r m

� �

r M

s ε ε
≠=−

+ +′= =∑Q a QI Ia   (13) 

where ε  is a small constant and �I  is the � �×  identity 

matrix. Since 
mQ  is nonnegative definite and full-rank, it is 

Positive Definite (PD) and of course invertible. The 

optimization problem (6) is then replaced by the following 1ℓ  

regularized weighted least-squares problem: 

( ) ( ){ }1

1argm ,ˆ in

, ,

m

H

m
s

m

M

s

m M

λ−

∈
= − − +

= −

y Ws Q y Ws s

…

C  (14) 

The problem (14) obviously cannot be solved directly, since 

one has to know its solution to compute mQ  using (13). 

B. How to Solve It? 

As was shown in Part II.A, the matrix mQ  is PD, which 

means that 1

m

−
Q  is also PD. Therefore, there is a unique 

Cholesky factor 
mR  for 

1

m

−
Q  so that [16]: 

1 H

m m m

− = R RQ    (15) 

Substituting (15) in (14) yields: 

( )2

1
argmˆ in ,    , ,

m

mm m
s

m M Ms λ
∈

′ ′= − + = −y W s s …
C

  (16) 

where m
′y  and m

′W  are defined as: 

m m
′ =y R y     (17) 

m m
′ =W R W     (18) 

Problem (16) can be solved using the ICD method (7‒9) 

assuming that ˆ
rs  is known for all ,r m≠  so that ,mQ  mR  and 

therefore 
m
′y  and 

m
′W  can be computed. To cope with the 

problem of unavailability of ˆ ,rs  an iterative scheme can be 

used: starting from an initial guess (0) (0) (0)ˆ ˆ ˆ ,
T

M Ms s− =  s ⋯   at 

the i
th
 iteration, ( )i

mQ can be computed using 
( ) ( ) ( 1) ( 1)

1 1
ˆ ˆ ˆ ˆ, , , , .

i i i i

M m m Ms s s s
− −

− − +… …  The proposed algorithm is 

summarized in Table I. 

It is noteworthy that an excellent initial guess to start the 
iterations is to use the solution of (4). 

C. Computational Complexity 

We compute the complexity order of one iteration of the 
proposed algorithm summarized in Table I. Here is the order of 
computations for the 5 steps of the algorithm: 

1. In Step 1, computation of H

r ra a  should be neglected, since 

it is performed only for one time at the beginning and will  

TABLE I.  PROPOSED ALGORITHM 

 
I,PUT: 

data-set y, dictionary W, regularization parameter λ, parameter ε , initial 

guess [ ](0 ) ( 0) ( 0)
ˆ ˆ ˆ

T

M M
s s
−

=s ⋯ , number of iterations I. 

 
ITERATIO,S: 

For 1, 2, ,i I= … do the following: 

       For , , 1, 0,1, ,m M M= − −… … perform the following steps: 

1. Compute
( )i

m
Q from the following relation: 

2 2
( ) ( 1

1

1

)
ˆ ˆ

m M

�

r M r

i H i H

m r r r r r

m

r
s s ε

−

=− =

−

+

+= +∑ ∑Q a a a a I  

2. Obtain
( )i

m
R from the Cholesky decomposition of{ } 1

( )i

m

−

Q .  

3. Compute
( ) ( )i i

m m
′ =y R y and

( ) ( )i i

m m
′ =W R W . 

4. Compute: 
1

( ) ( ) ( ) ( 1) ( )

,

)

,

1

(
ˆ ˆ

m M

i i i i i

m r m r r m r

r M

i

m

r m

s s

−
−

=− = +

′ ′= −′ −∑ ∑e w wy  

where
( )

,

i

m r
′w is the rth column of

( )i

m
′W .  

5. Compute
( )

ˆ
i

m
s using the ICD method as: 

{ }( )( ) ( ) ( )

,
ˆ

H
i i i

m m m m
s

λ
φ ′= w e  

 

 

not vary during the whole process. Also, we define the 
following matrix: 

2( ) ˆ
r M

M
i H

r r rs
=−

= ∑Q a a    (19) 

Computing 
( )i

Q  for only one time, all the matrices ( )i

mQ  

for ,...,m M M= −  can be computed as: 

2( ) ( ) ˆ
m m m

i i H

m s= −Q Q a a   (20) 

Therefore, Step 1 includes one single computation of ( )iQ  

of order 2
� M  and computation of ( )i

mQ  from (20) for 

,...,m M M= −  each one of order 2
.�  The overall 

process will be of order 2
.� M  

2. This step includes the computation of the inverse of ( )i

mQ  

and then the Cholesky decomposition (each of order 3
� ) 

for ,..., .m M M= −  The overall computations will be of 

order 3
.� M  

3. The complexity of this step is dominated by the 

computation of the matrix multiplication ( ) ( )i i

m m
′ =W R W  

which is of order 2
� M  for each m. The overall cost is 

thus 2 2 .� M  
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4. Computational cost of Steps 4 and 5 is obviously 

negligible compared to Steps 2 and 3. 

Therefore, the dominant steps are Step 2 of order 3
� M  

and Step 3 of order 2 2
� M . Since the dictionary is redundant,  

M is much larger than �, and therefore the overall 
computational complexity of the proposed method is of order 

2 2
� M .  

Complexity of the ICD method to solve the BPDN problem 

(4) is of order �M  which implies that the proposed method 

offers an improved performance in price of higher complexity. 

III. SIMULATION RESULTS 

In this section, the proposed method is compared with the 
BPDN method of [10] formulated in (4). To do so, we consider 
a signal with the following form: 

( )
1

( ) cos 2 ( )
L

k k k

k

y t A f t tπ ϕ ν
=

= + +∑   (21) 

where 
kϕ  are i.i.d. random variables in interval [0,2π) with 

uniform distribution and ( )tν  is the additive noise. A data-set 

containing � samples is then formed by sampling this signal 
according to an irregular sampling pattern. The two methods 
are applied to the resulting data-set several times to be able to 
compare the frequency estimation methods accurately. 

The simulated signal consists of three sinusoidal terms with 
frequencies 1, 1.1 and 3 Hz with amplitudes of 3, 4 and 1, 
respectively. The additive noise is assumed to be zero-mean 
white Gaussian with standard deviation of 0.2.σ =  The 

sampling pattern shown in Figure 1 follows the Poisson 

distribution with mean 1
1 s

−Λ = ; i.e. the difference between 

two adjacent sampling instants follows an exponential 
distribution with mean 1 s. Number of data samples is assumed 

to be 24.� =  The frequency grid f is limited to 

max 10f± = ± Hz, therefore covers the interval of -10 to 10 Hz 

with step-size of 0.05 Hz. Only 5I =  iterations of the proposed 

algorithm were performed. 

 

 
Fig. 1.  Sampling pattern. 

The value of the regularization parameter in (4) is selected 
as: 

maxλ ρλ=     (22) 

where maxλ  is defined as: 

max

1
max

2

Hλ = W y    (23) 

and ρ is a constant parameter [10]. For 1ρ ≥  the solution to 

(4) is identically zero [10], therefore ρ  is assumed to be less 

than 1. 

In practice, 0.05ρ =  seems to be a good choice [10]. In 

simulations, we use 0.05ρ =  for both the proposed method 

and BPDN method. The value of ε  is assumed to be 0.001. 

The result of 20 independent simulations altogether has 
been shown in Figure 2. As can be seen from Figure 2(a), the 
spectrum estimated by BPDN is full of spurious peaks. The 
amplitudes of many of these spurious peaks are higher than that 
of the actual peak at 3 Hz. Figure 2(b) shows that spurious 
peaks obtained by the proposed method are very rare with very 
small amplitudes. Moreover, the proposed method is less likely 
to miss the small actual peak at 3 Hz. To illustrate this, the area 
nearby the frequency 3 Hz in Figure 2 has been zoomed in and 
shown in Figure 3. Accurate counting of the number of circles 
(detected peaks) at 3 Hz shows that the number of those peaks 
with nonzero amplitude in Figure 3(a) is 15, while in Figure 
3(b) is 20. This means that BPDN has missed this peak in 5 
experiments, while the proposed method has never missed it. 

Figure 2(b) shows that the amplitude of the spectral peaks 
suggested by the proposed method is not exact. However, this 
should not be a serious problem. After the detection of the 
spectral peaks, their amplitude can be corrected by lest-squares 
fitting to the data-set y. The result of fitting the 3 spectral peaks 

detected by the proposed method to y  is shown in Figure 4. 

The actual values of the amplitudes are also shown in this 
figure with cross signs. As seen, the estimate values are very 
close to the actual ones. 

 

 
Fig. 2.  Result of 20 independent simulations, (a) BPDN, (b) proposed 

method. 



ETASR - Engineering, Technology & Applied Science Research Vol. 3, �o. 1, 2013, 368-372 372  
  

www.etasr.com Zahedi and Kahaei: Frequency Estimation of Irregularly Sampled Data Using a Sparsity Constrained… 
  

 

 
Fig. 3.  Zooming in the nearby of frequency 3 Hz in Figure 2, (a) BPDN, 

(b) proposed method. 

 
Fig. 4.  Estimate amplitude of the spectral peaks detected by the proposed 
method after least-squares fitting to the data-set. The actual values are shown 

by cross signs. 

IV. CONCLUSION 

An iterative sparsity-based method was proposed for the 
estimation of spectral lines of nonuniformly-sampled signals. 
The proposed method enforces the sparsity constraint to a 
weighted least-squares problem. It was shown via computer 
simulations that it is capable of estimating the spectral lines of 
the signal provided that a very limited number of data samples 
taken with arbitrary sampling pattern is available. The 
proposed method seems to be sensitive to the choice of a 
parameter named ε . Therefore, the selection of an appropriate 

value for this parameter remains an open problem. 

REFERENCES 

[1] R. Pribic, “Radar irregular sampling”, IEEE International Conference on 
Acoustics, Speech, and Signal Processing, ICASSP '04, Vol. 3, pp. 933–
936, 2004 

[2] S. Bourguignon, H. Carfantan, T. Böhm, “SparSpec: a new method for 
fitting multiple sinusoids with irregularly sampled data”, Astronomy and 
Astrophysics, Vol. 462, pp. 379–387, 2007. 

[3] J. Mateo, P. Laguna, “Improved heart rate variability signal analysis 
from the beat occurrence times according to the IPFM model”, IEEE 
Transactions on Biomedical Engineering, Vol. 47, No. 8, pp. 985–996, 
2000. 

[4] L. H. Benedict, H. Nobach, C. Tropea, “Estimation of turbulent velocity 
spectra from laser Doppler data”, Measurement Science and 
Technology, Vol. 11, No. 8, pp. 1089–1104, 2000. 

[5] N. R. Lomb, “Least-squares frequency analysis of unequally spaced 
data”, Astrophysics and Space Science, Vol. 39, No. 1, pp. 447–462, 
1976. 

[6] I. F. Gorodnitsky, B. D. Rao, “Sparse signal reconstruction from limited 
data using FOCUSS: a re-weighted minimum norm algorithm”, IEEE 
Transactions on Signal Processing, Vol. 45, No. 3, pp. 600–616, 1997. 

[7] M. D. Sacchi, T. J. Ulrych, C. J. Walker, “Interpolation and 
extrapolation using a high-resolution discrete Fourier transform”, IEEE 
Transactions on Signal Processing, Vol. 46, No. 1, pp. 31–38, 1998. 

[8] P. Ciuciu, J. Idier J. –F. Giovannelli, “Regularized estimation of mixed 
spectra using a circular Gibbs-Markov model”, IEEE Transactions on 
Signal Processing, Vol. 49, No. 10, pp. 2202–2213, 2001. 

[9] S. Chen, D. Donoho “Application of basis pursuit in spectrum 
estimation”, IEEE International Conference on Acoustics, Speech and 
Signal Processing, Vol. 3,  pp. 1865–1868, 1998. 

[10] S. Bourguignon, H. Carfantan, J. Idier, “A sparsity-based method for the 
estimation of spectral lines from irregularly sampled data”, IEEE Journal 
of Selected Topics in Signal Processing, Vol. 1, No. 4, pp. 575–585, 
2007. 

[11] S. S. Chen, D. L. Donoho, M. Saunders, “Atomic decomposition by 
basis pursuit”, SIAM Journal on Scientific Computing, Vol. 20, No. 1, 
pp. 33–61, 1999. 

[12] D. L. Donoho, M. Elad, V. N. Temlyakov, “Stable recovery of sparse 
overcomplete representations in the presence of noise”, IEEE 
Transactions on Information Theory, Vol. 52, No. 1, pp. 6–18, 2006. 

[13] P. Stoica, Jian Li, H. He, “Spectral analysis of nonuniformly sampled 
data: a new approach versus the periodogram”, IEEE Transactions on 
Signal Processing, Vol. 57, No. 3, pp. 843–858, 2009. 

[14] W. Roberts, P. Stoica, Jian Li, T. Yardibi, F. A. Sadjadi, “Iterative 
adaptive approaches to MIMO radar imaging”, IEEE Journal of Selected 
Topics in Signal Processing: Special Issue on MIMO Radar and Its 
Applications, Vol. 4, No. 1, pp. 5–20, 2010. 

[15] T. Yardibi, Jian Li, P. Stoica, Ming Xue, A. B. Baggeroer, “Source 
localization and sensing: a nonparametric iterative adaptive approach 
based on weighted least squares”, IEEE Transactions on Aerospace and 
Electronic Systems, Vol. 46, No. 1, pp. 425–443, 2010. 

[16] D. Watkins, Fundamentals of matrix comutations, John Wiley and Sons, 
2002. 

 


