
Engineering, Technology & Applied Science Research Vol. 8, No. 2, 2018, 2827-2833 2827

www.etasr.com Mashwani and Khusro: The Design and Development of a Semantic File System Ontology

The Design and Development of a Semantic File
System Ontology

Syed Rahman Mashwani
Department of Computer Science

University of Peshawar
Peshawar, Pakistan

syed.rahman@uop.edu.pk

Shah Khusro
Department of Computer Science

University of Peshawar
Peshawar, Pakistan
khusro@uop.edu.pk

Abstract—Semantic File System (SFS) is the vision for the future
of file systems where information is given with explicit meaning
to be processed by machines automatically and consumed by the
users easily. SFSs extend traditional file systems to organize and
retrieve information according to their semantics, intent and
relationships with other resources rather than their physical
locations. Ontology-based file system is a step to dissolve the
borders between semantic web and semantic desktop to make the
desktop part of a single giant web. Unfortunately, to the best of
the authors’ current knowledge, so far, no effort has been
exercised to develop an ontology for SFSs. This work contributes
a SFS ontology, which extends NEPOMUK information element
ontology framework into the domain of SFSs. The proposed SFS
ontology is freely available with full technical definitions of terms
and complete class hierarchy to be used for any purpose in
information technology (IT). In addition, as a proof-of-concept
implementation, we deploy the proposed ontology in the 360ᵒ
SFS. Finally, to get most of the benefits of the ontology, this paper
also presents a semantics-aware file manager.

Keywords-file systems; information management; information
retrieval, semantic desktop

I. INTRODUCTION
Traditional file systems organize files in hierarchy of

folders which have certain limitations. In addition, information
contained in files varies in structure. Semantics of the
information is restricted to the boundaries of their applications,
and therefore, are difficult to mine and retrieve. For efficient
and precise retrieval of information, machines must be able to
understand it, which needs semantics. Semantic web (SW) [1]
deals with information overload on the web. Efforts have been
put in binging this semantics-awareness to the desktop [2],
which has resulted in improvements especially in file retrieval
[3]. However, for file systems to be effective and accurate,
semantic desktop needs semantic file system (SFS) immensely
[4]. Ontology-based SFS has the potential to dissolve the
borders between SW and semantic desktop (SD) to make the
desktop part of a single giant web. However, to the best of our
knowledge, we found no file system ontology published
according to linked data principles [5]. Therefore, the main
contribution of this paper is the development of an SFS
ontology and its publishing on the web to be freely accessible
and reusable by other researchers. We deploy the SFS ontology

on our developed SFS called 360ᵒ-SFS. In addition, this paper
presents a semantic-aware file manager (FM) called 360ᵒ-FM
that is based on the same ontology.

II. MOTIVATION AND NEED
This section elaborates the potential role of SFS ontology

with the help of motivating scenarios. These scenarios have
been used in the evaluation of SFS ontology in section V.

A. Scenario 1: Single Centralized Machine Friendly
Metadata Repository For All Agents
Traditional file systems are limited to the basic metadata

about files. The information is preserved by the operating
system and application software using different structures,
which are not machine friendly. In addition, the application
must be aware of the structure of the file in order to use it.
Moreover, it became difficult for each application to
understand the structure of all possible file types. Therefore, it
is necessary to make available the file metadata in a single,
sharable repository with easy to understand structure so that
any application can easily use it.

B. Scenario 2: Advanced Search Queries
Traditional file systems maintain basic file metadata

including file name, date created, modified and time accessed
etc., which is exploited by search engines. A semantically
enhanced file system could maintain an adequate amount of
metadata in a single shared repository with rules enough to
perform reasoning by SFSs.

C. Scenario 3: Generating File Recommendations
A user often faces difficulties while organizing files. To

handle this issue, machines must be aware of the semantics of
directories. This knowledge could be exploited in
recommending directories to the users while they organize
files. In addition, a directory having name Tim Berners-Lee can
be linked e.g., using owl:sameAs to his URI or any other
resource having matching labels or a music album directory in
the file system can be linked to the URI of that album in an
Linked Open Data (LOD) set. Linking local directories and
files to LOD enables the user to explore additional related
information. In a similar way, files could also be recommended

Engineering, Technology & Applied Science Research Vol. 8, No. 2, 2018, 2827-2833 2828

www.etasr.com Mashwani and Khusro: The Design and Development of a Semantic File System Ontology

to be interlinked with other files or simply deleted if user
intends to do so. E.g.,

 If a user deletes some songs of an album in directory A
then songs of the same album that are stored in
directory B can be recommended for deletion.

 A file that was created together or frequently accessed
with the deleted file can also be recommended.

 Similarly, duplicated, near duplicated or earlier
versions of deleted files can be recommended for
deletion.

D. Scenario 4: Static Contents in Directories
Traditional file systems organize files in native structures

(directories), which are taxonomy-oriented. One of the
shortcomings of native structure is that a directory always
shows the same contents no matter in what context a user is
accessing information. A file importance changes according to
different factors, such as file access frequency, time, user’s
geographical location, or a user obligations (a user may have
many appointments, meetings, presentations, etc. in a day). But
a directory shows fragments of multiple contexts rather than a
single context. A semantically enhanced system could present
task specific files to a user. Files could be dynamically
organized in such a way that a user can access important files
easily.

III. SEMANTIC FILE SYSTEM ONTOLOGY DEVELOPMENT
Ontology can either be developed from scratch or by re-

using existing ontologies and vocabularies. Building ontology
from the scratch may result in multiple disparate vocabularies
for similar entities making the data integration task difficult [2].
Ontology reuse exploits the existing ontological knowledge to
create new ontologies [6]. Several existing ontologies
describing portions of large domain can be integrated while
developing a large ontology [7] to address new or emerging
problems. In addition, this reuse reduces the cost and improves
the quality of resulting ontology. Moreover, the interoperability
among applications gets increased as it provides a deeper,
machine-processable and commonly agreed upon
understanding of the underlying domain of interest. Without
reuse, the lack of integration will treat ontology like traditional
static knowledge bases and therefore, will not be able to
contribute to the realization of the SW [6, 8]. It is always
encouraged not to reinvent the wheel but to use or extend terms
from existing widely used vocabularies[7, 9-11]. We follow the
same practice of reusing terms from existing popular
vocabularies. Based on [11], we performed the following steps
for reusing existing ontologies in developing an SFS ontology.

A. Step 1. Discovery of Ontologies for Reuse
Finding ontological resources is an important step for reuse.

In SW, ontologies as well as their concepts and properties are
identified via URIs, which makes ontologies and ontological
entities accessible on the web and discoverable by crawlers [6].
In searching relevant ontologies, we used traditional web
search engines like Google, SW search engines including
Swogle [12], Watson [13], OntoSearch [14], ontology

repositories including DAML ontology library, Protégé OWL
library, etc., and Linked Open Vocabularies.

B. Step 2. Selecting Relevant Reuse Candidates
Table I depicts vocabularies that we have manually selected

for possible reuse after carefully proofreading. NEPOMUK
intends to bring solution to annotate and interlink arbitrary
information on the local desktop making it machine
processable. In addition, it enables interconnection and
information exchange among desktops [15]. NEPOMUK
ontologies are carefully crafted by a large team of experts over
many years. Its aim is to provide a unified vocabulary for
describing desktop resources. W3C Basic Geo is a widely used
vocabulary for representing latitude, longitude and altitude
information about spatially-located things.

C. Step 3. Customization, Extending and Integrating Relevant
Ontologies
The identified reusable ontologies were integrated into the

final application ontology. We mostly reused terms of
NEPOMUK ontologies. NEPOMUK ontologies provide basic
terms to describe desktop resources. To capture more semantics
and to best fit in the domain of SFSs we extend them by
defining new properties. Table II presents the competency
questions to be answered by an SFS ontology.

IV. TERMS DESCRIPTION OF SFS ONTOLOGY
We follow Linked Data best practices [5] while designing

our SFS ontology. The namespace of the ontology is defined as
“https://w3id.org/sfs-ontology#”. Each term in the ontology is
accessible via persistent HTTP URIs with content negotiation
capability. If a URI is accessed by a human, then human-
readable information is provided and if it is accessed by a
machine then machine-understandable information is provided
to client. The web server is configured to do this redirection by
exploiting 303 See Other HTTP status code. To maximize
interoperability, almost all classes and most of the properties
are reused from NIE Ontology Framework (see Table I).
Where applicable, we defined new terms to extend them into
the domain of SFSs. In the following, we describe the newly
defined/extended terms.

A. Classes Description
FileAccess

FileAccess is uniquely identified by time, latitude,
longitude and altitude. An object of FileAccess is created upon
each file access. The fileAccessLocation property relates
objects of nfo:FileDataObject and FileAccess classes. This
enables a user to track accessed time and location of a file.

Super Class: rdfs:Resource
In Domain of: fileAccessedLocation
In Range of: nfo:FileDataObject
Restrictions:

sfs:fileAccessedTime Some(Existential) dateTime,
sfs:fileAccessedTime Maximum Cardinality 1,
geo:location Some (Existential) geo:Point,
geo:location Maximum Cardinality 1,

Engineering, Technology & Applied Science Research Vol. 8, No. 2, 2018, 2827-2833 2829

www.etasr.com Mashwani and Khusro: The Design and Development of a Semantic File System Ontology

TABLE I. REUSE CANDIDATES. THE PERCENTAGE REFERS TO THE TOTAL NUMBER OF REUSED (R)/NEWLY DEFINED (N) TERMS IN SFS ONTOLOGY

Vocabulary Name Category Concepts Properties Total Terms % of terms Object Data
SFS Ontology

https://w3id.org/sfs-ontology/ SFS 1 15 7 23 (N) 10.8

NEPOMUK Information Element Core Ontology (NIE)
http://www.semanticdesktop.org/ontologies/2007/01/19/nie/

General/
Documents 10 14 28 33 (R) 15.6

NEPOMUK File Ontology (NFO)
http://www.semanticdesktop.org/ontologies/2007/03/22/nfo

General/
Documents 58 17 57 63 (R) 29.7

NEPOMUK EXIF Ontology (NEXIF)
http://www.semanticdesktop.org/ontologies/2007/05/10/nexif/ Multimedia 5 8 148 47 (R) 22.2

NEPOMUK ID3 Ontology (NID3)
http://www.semanticdesktop.org/ontologies/2007/05/10/nid3 Multimedia 10 28 29 29 (R) 13.7

Basic Geo Vocabulary (Geo)
http://www.w3.org/2003/01/geo/ Location 2 1 4 6 (R) 2.8

NEPOMUK Annotation Ontology (NAO)
http://www.semanticdesktop.org/ontologies/2007/08/15/nao/ Annotations 9 17 15 3 (R) 1.4

NEPOMUK Contact Ontology (NCO)
http://www.semanticdesktop.org/ontologies/2007/03/22/nco Contact 41 33 34 2 (R) 0.9

NEPOMUK Multimedia Ontology (NMM)
http://www.semanticdesktop.org/ontologies/2009/02/19/nmm Multimedia 12 16 21 6 (R) 2.8

Total number of terms in SFS Ontology 212 100%

TABLE II. COMPETENCY QUESTIONS

Which files are temporally related
to user’s current context?

Which files are related to the user’s
current geographical context?

Get me those files which are
frequently accessed by the user at
a specific geographical location

Get me those files which are frequently
accessed by the user at specific temporal

duration
Show me all those files which are
frequently accessed with the File

A

Show me all related files which are in
the child directories of the Path XYZ

Show me all related files which
are in the parent directories of the

Path XYZ

Get me those files which are tagged with (W
OR X) AND Y but NOT Z

Get me all files created by XYZ
application

Get me all files created by XYZ
hardware (Digital Camera etc.)

Get me those files accessed at a
specific geographic point, city or

country etc.

Get me all those pictures taken with camera
XYZ at geographical location XYZ and

having resolution higher than XYZ.

Show me duplicate and near
duplicate files of file XYZ

Show all those files which are recently
created or modified by application

XYZ

Show me files which are created
together with file XYZ

Get me those files which are frequently
accessed on Sunday

B. Properties Description:
fileAccessedLocation_Time

It relates objects of nfo:FileDataObject and FileAccess
classes, which enables a user to track the accessed time and
location of a file so that frequently accessed timings and
locations can be calculated.

Domains: nfo:FileDataObject
Ranges: FileAccess

belongedToContainer
It is the previous container of a file, which models the

containment relations between normal or compressed files and
folders at their previously stored locations. A user groups
semantically related files in a folder. If a user places a file in
one folder and then after some time he/she moves it to another
folder then it indicates that files in both folders are somehow
related to each other. Tracking previous containers/folders of a
file enables relating files based on these semantics.

Domains: nie:DataObject
Ranges: nfo:DataContainer
Disjoint With: nfo:belongsToContainer

fileCreatedByApplication

This property relates a file to the application with which it
was created. It helps in maintaining provenance of a file.

Domains: nfo:FileDataObject
Ranges: nfo:Application
Characteristics: Functional

fileModifiedByApplication
This property tracks applications that make changes to a

file. This property helps in maintaining provenance of a file.

Domains: nfo:FileDataObject
Ranges: nfo:Application

fileCreatedByUser
It is the user who creates the file. This property helps in

maintaining provenance of a file.

Domains: nfo:FileDataObject
Ranges: nco:Contact
Characteristics: Functional

fileCreatedFrom
A file created from (the contents of) another file. If file B is

created from file A and file C is created from file B then it can
be inferred that file C is created from file A.

Engineering, Technology & Applied Science Research Vol. 8, No. 2, 2018, 2827-2833 2830

www.etasr.com Mashwani and Khusro: The Design and Development of a Semantic File System Ontology

Domains: nfo:FileDataObject
Ranges: nfo:FileDataObject
Characteristics: Transitive

fileCreatedTogather
It relates two files that are created together within a

predefined threshold time.

Domains: nfo:FileDataObject
Ranges: nfo:FileDataObject
Characteristics: Symmetric

fileDuplicateOf
It relates a file to its exact match. Files are duplicates of

each other if they are content-wise 100 % identical.

Domains: nfo:FileDataObject
Ranges: nfo:FileDataObject
Characteristics: Symmetric

fileFrequentlyAccessedWith
It represents a file which is frequently accessed with

another file.

Domains: nfo:FileDataObject
Ranges: nfo:FileDataObject
Characteristics: Symmetric

fileModifiedByUser
It tracks users who modify the file. This property helps in

preserving provenance information of a file.

Domains: nfo:FileDataObject
Ranges: nco:Contact

fileCreatedOnDevice
It represents the computer or device on which a file is

created. This property helps in maintaining provenance of a
file.

Domains: nfo:FileDataObject
Ranges: -
Characteristics: Functional

fileModifiedOnDevice
It tracks devices/computers on which a file is modified. A

file is annotated each time if it is modified on a different
device. This property helps in preserving the provenance
information of the file.

Domains: nfo:FileDataObject
Ranges: -

fileManualPeakLocation
Manual location based annotation. The difference between

filePeakLocation and fileManualPeakLocation is that in the
former annotation is done automatically as a user interacts with
files and in the later the annotation is done manually by a user.

Domains: nfo:FileDataObject
Ranges: geo:Point

fileModifiedByApplication

This property relates a file to an application that makes
changes to a file. It helps in maintaining provenance
information of a file.

Domains: nfo:FileDataObject
Ranges: nfo:Application

fileNearDuplicateOf
This property relates two files that are identical to some

extent (e.g. older versions of the same file). It uses a similarity
threshold to detect near-duplicates. E.g. If similarity between
two files is greater than 80%, then both files are "near
duplicates".

Domains: nfo:FileDataObject
Ranges: nfo:FileDataObject
Characteristics: Symmetric

filePeakLocation
This property represents the geographical location where a

file is frequently accessed.

Domains: nfo:FileDataObject
Ranges: geo:Point

fileAccessedCounter
This property means the number of times a file is accessed.

Domains: nfo:FileDataObject
Ranges: xsd:integer
Maximal cardinality: 1

fileAccessedTime
File accessed time.
Domains: nfo:FileDataObject, sfs:FileAccessedTime
Range: xsd:dateTime

fileAccessedHistory
The date and time is recorded each time a file is accessed to

maintain a file’s accessed history.

Domains: nfo:FileDataObject
Ranges: xsd:dateTime

fileModifiedHistory
The date and time is recorded each time a file is modified to

maintain a file’s history.

Domains: nfo:FileDataObject
Ranges: xsd:dateTime

filePeakDay
This property represents a file's peak day, the day on which

a file is frequently accessed. Its value ranges from 0-6, with 0
being Sunday.

Domains: nfo:FileDataObject
Ranges: xsd:integer

filePeakHour
This property represents hour of the file. The value ranges

from 0 to 23.

Engineering, Technology & Applied Science Research Vol. 8, No. 2, 2018, 2827-2833 2831

www.etasr.com Mashwani and Khusro: The Design and Development of a Semantic File System Ontology

Domains: nfo:FileDataObject
Ranges: xsd:integer

contentType
This property represents the minimum age restriction of the

user to access a file or folder. If its value is set to 18 then the
contents will not be accessible to non-adults.

Domains: nfo:FileDataObject, nfo:DataContainer
Ranges: xsd:integer
Maximal cardinality: 1

V. DEPLOYING ONTOLOGY
The ontology was developed using Protégé and is freely

available under a Creative Commons Attribution license from
https://w3id.org/sfs-ontology/. SFS ontology was deployed on
our developed file system called 360ᵒ-SFS, which is freely
available from https://w3id.org/360-sfs/. The 360ᵒ-SFS
automatically creates objects of classes and annotates them
while the user interacts with file system resources. We also
developed a file manager which enables the user to browse files
semantically by exploiting the same centralized
knowledgebase.

A. 360ᵒ Semantic File System
For proof-of-concept implementation, we deployed the

proposed ontology on 360ᵒ-SFS. The 360ᵒ-SFS enables a user
to semantically retrieve files in less time and with less human
effort. This is done via NOW and TAGs special folders. The
contents of these special folders change dynamically according
to the user’s current context, as discussed in scenario 5. The
system creates instances of the classes and annotates them
according to user’s interaction with file system resources. This
is done with the help of file system events. For instance, if a
user creates a file or a folder in the file system then an instance
of the nfo:LocalFileDataObject or nfo:Folder is created
respectively and annotated with the required information. If a
user deletes a file then upon file delete event that particular
object of nfo: LocalFileDataObject is deleted from knowledge
base along with its all references.

B. 360ᵒ File Manager
360ᵒ-SFS is backward compatible with traditional file

managers as well as all other software applications. However,
access to full semantics is not possible through traditional file
managers. To make the most from the file system ontology, file
managers need to be ontology aware to manipulate file system
resources accordingly. Therefore, to further facilitate user’s
interaction with 360ᵒ-SFS, we propose 360ᵒ-File Manager
(FM), (Figure 1). The 360ᵒ-FM extends traditional hierarchical
file organization by overcoming some of its limitations. In the
following, we explain the interface and functionality of 360ᵒ-
FM:

1. “Traditional Pane” provides access to the stored files in
a way like that of traditional file managers.

2. “Semantic Pane” enables a user to access files
semantically. It shows the contents of NOW and TAGs
directories, eliminating the need of going into NOW and
TAGs directories.

2.1. “Semantic Sub-Pane-1” This pane has two tabs: NOW
and TAGs. NOW tab recommends files only on the basis
of temporal and user’s geographical location while TAGs
tab facilitates file management based on tags. Now tab
shows only those files that are accessed frequently at
current time and geographical location. The items in Sub-
Pane-1 (contents of NOW and TAGs tabs) are computed
on the basis of currently selected directory (territory) in
Traditional Pane. Only those links are shown in Sub-
Pane-1, which are stored within a selected directory. All
files stored in the parent directories of the selected
directory are ignored. Each time the user selects another
directory in Traditional Pane, the contents of Sub-Pane-1
are refreshed to show contextually relevant files
accordingly.

2.2. “Semantic Sub-Pane-2” shows files which are
semantically related to the currently selected file in the
details view of Traditional Pane. Each time a user selects
a file in details-view of Traditional Pane, contents of Sub-
Pane-2 are refreshed to show contextually relevant files
accordingly. The Internal tab shows links to the file
system internal files while Linked Cloud tab relates the
selected files to linked cloud. The linked cloud could be
private linked cloud or Linked Open Data cloud. The
Show Inferences check box enables or disables inferences
in Sub-Pane-2.

The Semantic Pane is the only difference between 360ᵒ-FM
and a traditional file manager. In addition, plugins can be
developed for traditional file managers to show the semantic
contents in a way similar to Semantic Pane. A file manager
may allow a user to sort files based on context relevancy.
Furthermore, file icon size can increase or decrease as per its
relevance to the current context and color gradient of the file’s
icon can also be modified to make the important files
prominent in a directory. As stated in scenario 1, 360ᵒ-SFS
maintains a single centralized machine friendly metadata
repository. The repository is accessible to all agents and
advanced queries can be performed, as discussed in scenario 2.
The 360ᵒ-FM exploits the repository and enables file retrieval
semantically. In addition, different applications can exploit the
repository for recommendations within their respective
interfaces and also semantically related files can be
recommended along with Recently Opened Files.

VI. RELATED WORK
The term Semantic File System was first in [16]. File type

specific transducers mine and index attributes from files. They
used virtual directories for file navigation based on the
extracted attributes. Authors in [17] further extended the idea
and proposed the SFS that also considers users to define
arbitrary metadata for files in the form of key-value pairs. The
work of [18-22] are based on tags semantics that enable users
to retrieve files based on tags assigned to them. GFS [23] is
also a tag-based file system but its advantage over other file
systems is that it provides associative access to tags based
navigation and does not replace traditional hierarchical folder
navigation. Authors in [24] proposed the changing of folder
and file icons according to their popularity to assist the user to

Engineering, Technology & Applied Science Research Vol. 8, No. 2, 2018, 2827-2833 2832

www.etasr.com Mashwani and Khusro: The Design and Development of a Semantic File System Ontology

locate important files easily. Files are uploaded to a webserver.
The popularity of files is calculated based on the users’
annotations. In LiFS [25], authors propose linking files
internally in a file system and offer support for arbitrary
annotations. Authors in [26, 27] propose linking of desktop and
web resources. The proposed system enables a user to browse

web resources as if they are stored on desktop. In [28], authors
describe different benefits of ontology based file systems.
Although, many SFSs have been proposed, to the best of our
knowledge, no effort has been exercised till date to develop
ontology for SFSs and make it available for public use by
publishing it according to linked data principles.

Fig. 1. 360ᵒ File Manager – An interface for interacting with file system resources

VII. CONCLUSION
The main contribution of this paper lies in the shape of SFS

ontology. SFS ontology intends to provide vocabulary upon
which SFSs could be built. We designed and published SFS
ontology by following linked data best practices. For
interoperability, we reused or extended terms from existing
popular vocabularies. The terms of the proposed SFS ontology
are provided with persistent URIs with content negotiation
capability. For the proof-of-concept implementation, we have
deployed our developed 360ᵒ-SFS and 360ᵒ File Manager using
the proposed ontology, which enables the retrieval of files on
the basis of semantics, intent and relationships with other files
rather than their physical locations as with traditional file
systems. The proposed SFS ontology is by no means complete,
more terms may appear in future. The SFS ontology is freely
available with full technical term definitions and complete class
hierarchy for any purpose in information technology. SFS
ontology remains open for additions and corrections upon
feedback.

REFERENCES
[1] T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic Web”, Scientific

American, Vol. 284, No. 5, pp. 28-37, 2001
[2] A. Mylka, L. Sauermann, M. Sintek, L. van Elst, NEPOMUK

information element ontology, available at: http://oscaf.sourceforge.net/
nie.html, 2013.

[3] B. Schandl, B. Haslhofer, “The sile model: A semantic file system
infrastructure for the desktop”, The Semantic Web: Research and
Applications. ESWC 2009. Lecture Notes in Computer Science, Vol.
5554, pp. 51-65, Springer, Berlin, Heidelberg, 2009

[4] L. Sauermann, A. Bernardi, A. Dengel, “Overview and outlook on the
semantic desktop”, Proceedings of the 2005 International Conference on

Semantic Desktop Workshop: Next Generation Information
Management D Collaboration Infrastructure, Vol. 175 pp. 74-91, 2005

[5] T. Berners-Lee, “Linked Data”, available at: http://www.w3.org/
DesignIssues/LinkedData.html, 2006

[6] E. Simperl, “Reusing ontologies on the Semantic Web: A feasibility
study”, Data & Knowledge Engineering, Vol. 68, No. 10, pp. 905-925,
2009

[7] N. F. Noy, D. L. McGuinness, Ontology development 101: a guide to
creating your first ontology, available at: https://protege.stanford.edu
/publications/ontology_development/ontology101.pdf, 2001

[8] R. Stecher, C. Niederée, W. Nejdl, P. Bouquet, “Adaptive ontology re-
use: Finding and re-using sub-ontologies”, International Journal of Web
Information Systems, Vol. 4, No. 2, pp. 198-214, 2008

[9] B. Schandl, B. Haslhofer, “Files are siles: Extending file systems with
semantic annotations”, International Journal on Semantic Web and
Information Systems, Vol. 6, No. 3, pp. 1-21, 2010

[10] M. Poveda Villalón, M. C. Suárez-Figueroa, A. Gómez-Pérez, “The
landscape of ontology reuse in linked data”, in 1st Ontology Engineering
in a Data-driven World (OEDW 2012) Workshop at the 18th
International Conference on Knowledge Engineering and Knowledge
Management (EKAW2012), Galway, Irlanda, October 8-12, 2012

[11] M. C. Pattuelli, A. Provo, H. Thorsen, “Ontology building for linked
open data: A pragmatic perspective”, Journal of Library Metadata, Vol.
15, No. 3-4, pp. 265-294, 2015

[12] T. Finin, Y. Peng, R. S. Cost, J. Sachs, A. Joshi, P. Reddivari, R. Pan, V.
Doshi, L. Ding et al., “Swoogle: A search and metadata engine for the
Semantic Web”, 13th ACM International Conference on Information
and Knowledge Management, pp. 652-659, ACM, 2004

[13] M. d’ Aquin, M. Sabou, M. Dzbor, C. Baldassarre, S. Angeletou, E.
Motta, “Watson: A gateway for the Semantic Web”, in Poster session of
the European Semantic Web Conference, ESWC, Innsbruck, Austria,
June 3-7, 2007

[14] Y. Zhang, W. Vasconcelos, D. Sleeman, “Ontosearch: An ontology
search engine”, Research and Development in Intelligent Systems XXI,
pp. 58-69, Springer-Verlag London, 2005

Engineering, Technology & Applied Science Research Vol. 8, No. 2, 2018, 2827-2833 2833

www.etasr.com Mashwani and Khusro: The Design and Development of a Semantic File System Ontology

[15] T. Groza, Z. Handschuh, K. Möller, G. Grimnes, L. Sauermann, E.
Minack, C. Mesnage, M. Jazayeri, G. Reif, R. Gudjónsdottir, “The
NEPOMUK project-on the way to the social semantic desktop”,
Proceedings of I-Semantics 07, Graz, Austria, pp. 201-211, 2007

[16] D. K. Gifford, P. Jouvelot, M. A. Sheldon, J. W. O'Toole Jr, “Semantic
file systems”, Proceedings of the thirteenth ACM symposium on
Operating systems principles, Pacific Grove, California, United States,
pp. 16-25, October 13-16, 1991

[17] D. Garg, V. Mehta, S. Pandit, M. De Rosa, “A writable semantic file
system”, in: Selected Project Reports, Fall 2005 Advanced OS &
Distributed Systems (15-712), pp. 56-65, Carnegie Mellon University,
Pittsburgh, 2005

[18] Y. Padioleau, B. Sigonneau, O. Ridoux, “Lisfs: A logical information
system as a file system”, Proceedings of the 28th International
Conference on Software Engineering, pp. 803-806, 2006

[19] Tx0, “Tagsistant: Semantic file system”, available at:
http://www.tagsistant.net, 2007

[20] S. Schenk, O. Görlitz, S. Staab, “TagFS: Bringing semantic metadata to
the filesystem”, in: Poster at the 3rd European Semantic Web
Conference (ESWC), Budva, Montenegro, June 11-14, 2006

[21] S. Bloehdorn, O. Görlitz, S. Schenk, M. Völkel, “Tagfs - tag semantics
for hierarchical file systems”, Proceedings of the 6th International
Conference on Knowledge Management (I-KNOW 06), Graz, Austria.
Vol. 8, pp. 6-8, 2006

[22] S. Bloehdorn, “SemFS - semantic file system”, available at:
http://semanticweb.org/wiki/SemFS, 2009

[23] D. Di Sarli, F. Geraci, “GFS: a Graph-based File System Enhanced with
Semantic Features”, Proceedings of the 2017 International Conference
on Information System and Data Mining, pp. 51-55, April 1-3, 2017

[24] B. Mizrachi, L. S. Deluca, File folder display, US Patent 20170109010,
2017

[25] S. Ames, N. Bobb, K. M. Greenan, O. S. Hofmann, M. W. Storer, C.
Maltzahn, E. L. Miller, S. A. Brandt, “LiFS: An attribute-rich file system
for storage class memories”, 23rd IEEE/14th NASA Goddard
Conference on Mass Storage Systems and Technologies, May 15-18,
2006

[26] B. Schandl, “TripFS: Exposing file systems as linked data”, Linked
Open Data Triplification Challenge, Graz, Austria, September 2-4, 2009

[27] B. Schandl, “Representing linked data as virtual file systems”, 2nd
International Workshop on Linked Data on the Web Madrid, Spain,
April 20, 2009

[28] H. B. Ngo, C. Bac, F. Silber-Chaussumier, T. Q. Le, “Towards
ontology-based semantic file systems”, 2007 IEEE International
Conference on Research, Innovation and Vision for the Future, Hanoi,
Vietnam, pp. 8-13, March 5-9, 2007

