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Abstract— In this paper, a new three-dimension (3D) autonomous 

chaotic system with a nonlinear term in the form of a hyperbolic 

sine (or cosine) function is reported. Some interesting and 

complex attractors are obtained. Basic dynamical properties of 

the new chaotic system are demonstrated in terms of Lyapunov 

exponents, Poincare mapping, fractal dimension and continuous 

spectrum. Meanwhile, for further enhancing the complexity of 

the topological structure of the new chaotic attractors, the 

attractors are changed from two-wing to four-wing through 

making axis doubly polarized, theoretically analyzed and 

numerically simulated. The obtained results clearly show that the 

chaotic system deserves further detailed investigation. 
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I. INTRODUCTION 

Nonlinear analysis especially chaos analysis and 
applications in dynamical systems has been studied extensively 
within many fields, such as secure communication, 
synchronization and control [1-3]. Since Lorenz found the first 
chaotic attractor in a simple mathematical model of a weather 
system which was constituted of three-order ordinary 
differential equations in 1963 [4], in-depth researches to 
propose new chaotic attractors have been undergone in the last 
four decades. In 1976, Rossler conducted important work that 
rekindled the interest in three-dimensional (3D) dissipative 
dynamical systems [5]. Then, many Lorenz-like or Lorenz-
based chaotic systems were proposed and investigated [6-17]. 

Creating a chaotic system with a more complicated 
topological structure such as a multi-wing attractor becomes a 
desirable task and sometimes a key issue for many engineering 
applications. Recently, some new four-wing chaotic systems 
were proposed. Wang et al. discussed the methods to generate a 
four wing chaotic attractor in detail and gave some sufficient 
conditions, such as: (1) there is at least one quadratic term in 
every equation; (2) there are at least three independent 
variables, and there is at least one linear term in every equation 
of the system; (3) there are five equilibria [10]. The authors 
pointed out the quadratic terms are very important in creating a 
four-wing chaotic attractor [10]. In 2010, Jia et al. reported a 
four-wing chaotic attractor and the chaotic characteristic of the 

system was proved by investigating the existence of a 
topological horseshoe in it, based on the topological horseshoe 
theory [11]. In 2011, Wang et al. investigated a four-wing 
chaotic attractor and demonstrated that there existed 
heteroclinic orbits [12]. The four-wing chaotic attractors in [11, 
12] all meet the four-wing standards proposed in [10].  

In this paper, a novel approach to construct a four-wing 
chaotic attractor is proposed. Firstly a new chaotic attractor is 
established. It is a 3D autonomous system which mainly relies 
on a quadratic hyperbolic sine (or cosine) nonlinear term and a 
quadratic cross-product term to introduce the nonlinearity 
necessary for folding trajectories, which can generate an 
attractor through theoretical analysis and detailed numerical 
simulation. Nonlinear dynamic properties of this system are 
studied by means of nonlinear dynamics theory, numerical 
simulation, Lyapunov exponents, Poincare mapping, fractal 
dimension and continuous spectrum. The compound structure 
of the two-wing attractor obtained by merging together two 
simple attractors after performing one mirror operation is 
explored. Finally, a four-wing type of the new chaotic attractor 
is realized by using z -axis doubly polarized. 

II. NEW 3D AUTONOMOUS CHAOTIC SYSTEM 

A new 3D autonomous chaotic system with a non-linear 
term in the form of a hyperbolic sine (or cosine) function is 
expressed as follows respectively: 
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Fig. 1.  Phase portraits of system (1) at the initial conditions [ ]3, 2, 2
T
. (a) x y z− −  view, (b) x y−  plane, (c) x z−  plane, (d) y z−  plane. 

 

Fig. 2.  Phase portraits of system (2) at the initial conditions [ ]3, 2, 2
T
. (a) x y z− −  view, (b) x y−  plane, (c) x z−  plane, (d) y z−  plane. 
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where , , ,a b c d  are real parameters assuming that , , , 0a b c d >  

and , ,x y z  are the state variables. Systems (1) and (2) can 

generate a new two-wing chaotic attractor for the parameters 

10, 30, 2a b c= = =  and 2.5d = . The chaotic attractors are 

displayed in Figures 1 and 2. It appears that the new attractor 
exhibits an interesting complex chaotic dynamics behavior. 

From Figures 1 and 2, it can be seen that the nonlinear 
dynamic behaviors for systems (1) and (2) are very similar. So, 
below we mainly investigate the properties of system (1) since 
similar methods can be used for research on system (2). 

III. BASIC PROPERTIES OF SYSTEM (1) 

A. Equilibria 

Let: 

( )

( )

0,

0,

sinh 0,

a y x

bx cxz

xy dz

− =


− =
 − =

  (3) 

If 0db c> > , the system has two equilibria points, which 

are respectively described as follows: 

( )ln , ln ,E m m b c+ , ( )ln , ln , .E m m b c− − −  

where 2
4 2, 2m p p p db c= + + = . When 10, 30,a b= =  

2, 2.5c d= = , we operate above those nonlinear algebraic 

equations and obtain that: 

( )2.0779,2.0799,15E+ , ( )2.0779, 2.0799,15E− − − . 

For equilibrium point E+ , system (1) are linearized, the 
Jacobian matrix is defined as: 

( ) ( )

0 10 10 0

0 0 0 4.16 .

cosh cosh 77.95 77.95 2.5

a a

J b cz cx

y xy x xy d

+

− −   
   = − − = −   

  − −  
  

To gain its eigenvalues, we let 0I Jλ +− = .  

These eigenvalues corresponding to the equilibrium point 

E +  are 
1 15.9997,λ = − 2 1.7498 +20.0468iλ =  and 

3 1.7498 -20.0468 .iλ =  

 Here 
1λ  is a negative real number and 

2λ  and 
3λ  become 

a pair of complex conjugate eigenvalues with positive real parts. 

The equilibrium point E+  is a saddle-focus point, and system 
(1) is unstable at this equilibrium point. 

For the equilibrium point E − , its Jacobian matrix equals to: 

( ) ( )

0 10 10 0

0 0 0 4.16 .

cosh cosh 77.95 77.95 2.5

a a

J b cz cx

y xy x xy d

+

− −   
   = − − = −   
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The same we let 0.I Jλ −− = These eigenvalues 

corresponding to the equilibrium point E −  are 
1 15.9997,λ = −  

2 1.7498 +20.0468iλ =  and 3 1.7498 -20.0468iλ = . 

Apparently 
1λ  is a negative real number and 

2λ  and 
3λ  

form a complex conjugate pair and their real parts are positive. 

The equilibrium point E −  is also a saddle-focus point, and 
system (1) is unstable at this equilibrium point. 

By the above brief analysis, the two equilibrium points of 
the non-linear system are all saddle focus-nodes. 

B. Symmetry and invariance 

It is easy to see the invariance of system under the 

coordinate transformation ( ) ( ), , , , ,x y z x y z→ − − i.e., the 

system has rotation symmetry around the z-axis [16]. The orbit 

on the z-axis tends to the origin as t → ∞ . 

C. Dissipativity and the existence of attractor 

The three Lyapunov exponents and the divergence of the 
vector field is:  

( )
3

1

,i
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x y z
LE V a d f
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∂ ∂ ∂
= ∆ = + + = − + =
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       (4) 

where ( )1, 2,3iLE i =  denote the three Lyapunov exponents of 

the system. Note that ( ) 12.5f a d= − + = −  is a negative value, 

so the system is a dissipative system and an exponential rate is: 

12.5
.

fdV
e e

dt

−= =                                              (5) 

From (5), it can be seen that a volume element 
0V  is 

contracted by the flow into a volume element 12.5

0

t
V e

−  in time 

.t This means that each volume containing the system 

trajectory shrinks to zero as t → ∞  at an exponential rate of 

12.5− . Therefore, all system orbits are ultimately confined to a 

specific subset having zero volume and the asymptotic motion 
settles onto an attractor [14, 15, 17]. 
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D. Lyapunov exponent and fractional dimension 

The Lyapunov exponents refer to the average exponential 
rates of divergence or convergence of nearby trajectories in the 
phase space [13, 17]. If there is at least one positive Lyapunov 
exponent, the system can be defined to be chaotic. The 

Lyapunov exponents are calculated to be 1 0.6649,l = 1 0l =  

and 
3 13.1763l = − . Therefore, the Lyapunov dimension of this 

system is: 

1 1 2

31

0.6776
2 2 2.0514

13.1763

j

i

i

L

j

l
l l

D j
ll

=

+

+
= + = + = + =

−

∑
      (6) 

Equation (6) means system (1) is really a dissipative system, 
and the Lyapunov dimensions of the system are fractional. 
Having a strange attractor and positive Lyapunov exponent, it 
is obvious that the system is really a 3D chaotic system. 

E. Time domain, spectrum map and Poincare maps 

In the time domain, Figure 3 shows an apparently chaotic 

waveform ( )x t  of system (1) whilst, in the frequency domain, 

an apparently continuous broadband spectrum log x  of system 

(1) is shown in Figure 4. It can be seen from Figures 3 and 4 
that the new system exhibits chaotic behaviors. The Poincare 
maps are shown in Figure 5. From Figures 5(a) and 5(b), it can 
be seen that the Poincare maps consist of virtually symmetrical 
branches. We can further find that the section of the attractor 
looks like the tangled points from the Poincare map of system 
(1) as shown in Figures 5(c) and 5(d). 

F. Lyapunov exponent spectrum 

Figure 6 shows the Lyapunov exponent spectrum versus 
increasing c . It can be observed that the system is undergoing 

some representative dynamical routes, such as stable fixed 
points, chaos and period-doubling bifurcation. For example, 

when the parameters 10, 30, 2.5a b d= = = , while c  is varied 

on the closed interval ( ]0, 20 , we can summarize as follows: 

• 
1 2 10 1.04, 0, 0, 0,c l l l< ≤ = ≤ < there is a reverse 

period-doubling bifurcation route with a flip 
bifurcation, the system are some period-doubling 
bifurcation windows, one is shown in Figure 7(a) 

• 
1 2 11.04 6.66, 0, 0, 0,c l l l< ≤ > = < the system is 

chaotic as shown in Figure 7(b), and there are several 
periodic windows in the chaotic band. 

• 
1 2 16.66 9.11, 0, 0, 0,c l l l< ≤ = ≤ < the system are 

some period-doubling bifurcation windows, one is 
shown in Figure 7(c). 

• 
1 2 19.11 20, 0, 0, 0,c l l l< ≤ > = < the system is chaotic 

as shown in Figure 7(d), and there are several periodic 
windows in the chaotic band. 

 

Fig. 3.  Chaotic waveform of ( )x t . 

 

Fig. 4.  Continuous broadband frequency spectrum of log x . 

G. Forming mechanism of this new chaotic attractor 

structure 

Compound structures of system (1) may be obtained by 
merging together two simple attractor after performing one 
mirror operation [8, 17]. Such an operation can be revealed 
through the use of a controlled system of the form: 

( )

( )sinh

x a y x

y bx cxz u

z xy dz

= −


= − +
 = −

ɺ

ɺ

ɺ

                              (7) 

where u  is a parameter of control and the value of u  can be 
changed within a certain range. Here, we still select the initial 

values of the system as [ ]3,2,2
T
. When 0.1u = , the attractor 

evolves into partial but is still bounded in this time, the 
corresponding strange attractors are shown in Figure 8(a). 

When 4.2u = , the attractors are evolved into the single right 
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scroll attractor, it is only one half the original chaotic attractors 
in this time, the corresponding strange attractors are shown in 

Figure 8(b). Then we set u  to be a negative value. When 

0.1u = − , the corresponding strange attractors are shown in 

Figure 8(c), the attractor evolves into partial but is still 

bounded in this time. When 4.2u = − , the corresponding 

strange attractors are shown in Figure 8(d), the attractors are 
evolved into the single left scroll attractor; it is only one half 
the original chaotic attractors in this time. 

 

 

Fig. 5.  Poincaré maps in planes where (a) 0.5x = , (b) 0.5y = , (c) 18z = , (d) 22z = . 

 

Fig. 6.  Lyapunov exponents spectrum of system (1) with ( ]0, 20c∈  

 

 

Fig. 7.  Phase portraits of system (1) with ( ) ( ), , 10,30,2.5a b d =  at 

initial values [ ]3, 2, 2
T
, (a) 0.5c = , (b) 4.7c = , (c) 8c = , (d) 16c = . 
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Fig. 8.  Phase portraits of system (6) in y z−  plane at (a) 0.1u = , (b) 

4.2u = , (c) 0.1u = − , (d) 4.2u = − . 

IV. A FOUR-WING TYPE OF SYSTEM (1) 

A four-wing type of system (1) is studied in this section. 
First, we simply introduce the anti-structure of system (1). 
Then, two architectures are unified by one system.  In order to 
connect with the up-attractor and down-attractor, we use z-axis 
doubly polarized, and the attractors of system (1) will be 
changed from two-wing to four-wing. The principle will be 
discussed in detail below. 

A. Anti-structure of system (1) 

The anti-structure of system (1) can be expressed as: 

( )

( )sinh

x a y x

y bx cxz

z xy dz

= −


= +
 = − −

ɺ

ɺ

ɺ

                              (8) 

Under the same parameters conditions, system (8) is also 
chaotic. The chaotic attractor is displayed in Figure 9(b). It 

appears that the new attractor locates in the quadrant of 0,z <  

while the attractor of system (1) is in the quadrant of 0z >  

(Figure 9(a)). 

B. Uniform structure of system (1) and system (8) 

By using sign function, the uniform structure of system (1) 
and system (8) can be expressed as: 

( )
( )

( ) ( ) ( )( )sinh

x a y x

y bx cxz sign z

z sign z xy dz sign z

 = −


= −
 = −

ɺ

ɺ i

ɺ i i

            (9) 

Under the same parameters conditions, system (9) is also 
chaotic. The chaotic attractor is displayed in Figure 9(c). The 
full line is the trajectory of system (1) and the dotted line is the 
trajectory of system (8). It can be seen that the chaotic 
attractors can not evolve from negative half shaft to positive 
half shaft, and vice versa. So there are unable to produce a 
four-wing chaotic attractor. 

 

Fig. 9.  Phase portraits of (a) system (1), (b) system (8), (c) system (9), 

(d) system (10) in y z−  plane. 

C. A new four-wing chaotic attractor 

In order to connect with up-attractor and down-attractor, we 
do coordinate translation along the z-axis to zero point of 
system (9). Then, we get a four-wing system which can be 
expressed as: 

( )
( )( )

( ) ( ) ( )( )( )
10

sinh 10

x a y x

y bx cxz z sign z

z H z xy d z sign z


= −
= − +


= − +

ɺ

ɺ i i

ɺ i i i

    (10) 

where ( )H z  is the hysteretic function, and the expression can 

be expressed as 

( )
1, 1

1, 1

z
H z

z

→
= 

− → −
                        (11) 

The four-wing chaotic attractor is displayed in Figure 9(d). 
From Figure 9(d), it can be seen that the four-wing chaotic 
attractor is symmetrical around the x y−  plane. With further 

research, when the parameters 4.4, 46, 2.6a b d= = = , while 

c  is varied, the four-wing chaotic attractor of system (10) can 
exhibit very interesting dynamics behavior. The system is 
undergoing some novel dynamical routes, such as down-
period-down-chaos (Figure 10(c)), up-period-doubling-down- 
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chaos (Figure 10(d)), up-period-doubling-down-period-
doubling (Figure 10(e)) and down-sink (Figure 10(f)), it notes 

that here up means the area of 0,z > down means the area of 

0z < . Using the same mathematical methods as presented in 

section 3 for analyzing system (10), system (10) also has some 
basic dynamical properties, such as equilibria, symmetry, 
invariance, dissipativity, fractional dimension and so on.

 

 

Fig. 10.   Phase portraits of system (10) in y z−  plane at (a) 1.2c = , (b) 1.58c = , (c) 1.9c = , (d) 2.7c = , (e) 3.8c = , (f) 10c = .

V. CONCLUSION 

A new 3D autonomous chaotic system with  a nonlinear 
term in the form of a hyperbolic sine (or cosine) function is 
presented. The dynamical behaviors of the new system are 
analyzed, both theoretically and numerically, including some 
basic dynamical properties, Lyapunov exponents, Poincare 
mapping, routes to chaos and so on. In addition, forming 
mechanisms of compound structures of the new chaotic 
attractor have been studied and explored. Further, a new four-
wing chaotic attractor is realized by using doubly polarized z-
axis, more suitable for secure communication applications due 
too the complexity of its topological structure. 
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