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Abstract—Load forecasting has become one of the major areas of 
research in electrical engineering. Short term load forecasting 
(STLF) is essential for power system planning and economic load 
dispatch. A variety of mathematical methods has been developed 
for load forecasting. This paper discusses the influencing factors 
of STLF and an artificial intelligence (AI) based STLF model for 
MGVCL load. It also includes comparison of various AI models. 
Our main objective is to develop the best suited model for 
MGVCL, by critically evaluating the ways in which the AI 
techniques proposed are designed and tested. 

Keywords-load forecasting; neural network; adaptive neuro 
fuzzy interface system 

I. INTRODUCTION 

Electric load forecasting is the process used to forecast 
future electric load from the given historical load and weather 
information. In the last few decades, several models have been 
developed to forecast electric load more accurately than 
analytical methods. Load forecasting can be divided into three 
major categories [1]: 

1. Long-term electric load forecasting, used to supply electric 
utility company management with prediction of future 
needs for future expansion, equipment purchases, or hiring 
of new staff. 

2. Medium-term forecasting, used for the purpose of 
scheduling fuel supplies and maintenance. 

3. Short-term forecasting used to supply necessary 
information for the system management of day-to-day 
operations and unit commitment for economic load 
dispatch. 

Short term load forecasting mainly aims at one hour to one 
week forecast. As daily load pattern is highly non linear and 
random, it is very difficult to obtain higher accuracy using 
analytical methods. Application of artificial intelligence (AI) 
techniques like neural networks and adaptive neuro fuzzy 
interface systems is an advanced approach for accurate short 
term load forecasting. 

II. ARTIFICIAL NEURAL NETWORKS 

A. Introduction 

Artificial neural networks (ANNs) have been used for many 
years in sectors like medical science, defense industry, 

robotics, electronics, economy, forecasts etc. The learning 
property of ANNs in solving nonlinear and complex problems 
is the cause of their application to forecasting problems. 

B. Learning Algorithm 

ANNs work through optimized weight values [2]. The 
method by which the optimized weight values are attained is 
called learning. In the process of learning we present to the 
neural network pairs of input and output data and try to teach 
the network how to produce the output when the corresponding 
input is presented. When learning is complete, the trained 
neural network, with the updated optimal weights, should be 
able to produce the output within desired accuracy. There are 
several learning algorithms. They can be broadly categorized 
into two classes: supervised and unsupervised. Supervised 
learning means guided learning, i.e. when the network is 
trained by showing the input and the desired result side by-side. 
This is similar to the learning experience in our childhood. As 
children we learn about things (input) when we see them and 
simultaneously are told (supervised) their names and the 
respective functionalities (desired result). This is unlike the 
unsupervised case where learning takes place from the input 
pattern itself. In unsupervised learning the system learns about 
the pattern from the data itself without a priori knowledge. This 
is similar to our learning experience in adulthood. For example, 
often in our working environment we are thrown into a project 
or situation which we know very little about. However, we try 
to familiarize with the situation as quickly as possible using our 
previous experiences, education, willingness and similar other 
factors. This adaptive mechanism is referred to as unsupervised 
learning. 

C. ANN Model Traning Process 

Multilayer feed forward neural network (having input layer, 
hidden layer and output layer) is used for STLF. The training 
goal was set at 0 in order to ensure zero tolerance to network 
computational errors [3]. The transfer function used was the 
tan-sigmoid in the hidden layer while a linear function was 
used in the output layer neurons so as not to constrain the 
output's values. The learning function used is the steepest 
gradient descent method. The Levenberg-Marquardt learning 
function was used as it has better learning rate compared to the 
other available functions in forecasting problems. The training 
function used was the steepest gradient descent function and in 
some tests the steepest gradient descent method with 
momentum.  
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