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Abstract—This paper discusses the indirect space vector 
modulation for a four-leg matrix converter. The four-leg matrix 
converter has been proven to be a reliable, cost-effective, and 
compact power electronic interface to supply unbalanced or 
nonlinear loads. However, the added fourth leg has shifted the 
inverter side modulation from simple two-dimension SVM into 
complex three-dimension. This paper employs a new technique to 
implement indirect 3D SVM in digital controllers with further 
simplification in the modulation process. Moreover, Simulink 
simulation using repetitive controller has been performed to 
regulate the output voltage for 400 Hz Power supplies. 

Keywords-repetitive controller; 3D SVM; four-leg matrix 
converter 

I. INTRODUCTION  

The matrix converter is a static and direct AC to AC 
converter with unique features of unity input power factor, high 
power to volume ratio, high reliability and MTBF factor which 
has gained interest in applications aiming to produce a 
realization of a compact three-phase drive for military, 
industrial and aerospace systems [1-3]. Moreover, researchers 
utilized the matrix converter as an electronic interface layer 
between all resources (wind, solar, storage, etc.) of the energy 
matrix model and as an electronic transformer competing with 
the traditional magnetic transformer. The added fourth leg is 
placed to provide a return path for the zero-sequence current 
during unbalancing and add the capability of supplying 
different connected single-phase loads. Four-leg converters 
have a superior ability to produce balanced output voltage 
waveform even under severely unbalanced load or non-linear 
load conditions [4]. A four-leg matrix converter topology is 
shown in Figure 1. This paper investigates the indirect space 
vector modulation which decouples the modulation into two 
stages (rectifier + inverter) without intermediate energy 
storage. This decoupling is efficient and allows separate control 

to each stage, while as there is no intermediate energy storage, 
a proper synchronization between the two stages is mandatory 
to fulfill the power balance equation as instantaneous input 
power shall be equal to the instantaneous output power for the 
load [5]. At high-frequency applications with precise control 
requirements as for naval and aerospace applications where the 
115V-400Hz system is commonly used, traditional controllers 
have failed to achieve a proper regulation, due to the limited 
bandwidth so the repetitive controller is introduced as an 
optimum solution for this control problem [6]. 

II. MATRIX CONVERTER MODEL 

Matrix converter can be represented mathematically by 
matrix M and switches are identified as ܵ௫௬ , where X is the 
output phase, Y is the input phase and S is the linking switch 
between input and output. Rectifier switches are numbered 
from ଵܵ to ܵ଺ while inverter side switches are numbered from ܵ଻ to ଵܵସ. The rectifier is represented in Figure 1. Governing 
equations are: 

 Vout=M*Vin     (1) 

Iout=MT*Iin     (2) 

Vout=Mi*VDC     (3) 

VDC=MR*Vin     (4) 

Vout=Mi*MR*Vin    (5) 

where ௢ܸ௨௧  , ௜ܸ௡  , ௢௨௧ܫ	  , ௜௡ܫ	  , 	 ஽ܸ௖  , ௜ܯ	  , ோܯ	  , ܯ	  and ்ܯ	  are 
output voltage, input voltage, output current, input current, DC 
intermediate voltage, inverter side switching matrix, rectifier 
side switching matrix, matrix converter switching matrix and 
transposed matrix converter switching matrix respectively. ܯோ 
and Mi are described by (6) and (7) respectively: ܯோ = ቚܵ1 ܵ3 ܵ5ܵ2 ܵ4 ܵ6ቚ							    (6) 
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Fig. 1.  

M୧ = ተ S7 S8S9 S1S11 S1S13 S1
M equals to M

M = ተ S7 S8S9 S10S11 S12S13 S14
Equation (8) = 

ተ S1 ∗ S7 ൅ S2S1 ∗ S9 ൅ S2S1 ∗ S11 ൅ S2S1 ∗ S13 ൅ S2
=ተSaA SaBSbA SbBScA ScBSnA SnB
In Figure 1 v
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