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Abstract— The complexity of epilepsy created a fertile ground for 
further research in automated methods, attempting to help the 
epileptologists’ task. Over the past years, great breakthroughs 
have emerged in computer-aided analysis. Furthermore, the 
advent of Brain Computer Interface (BCI) systems has facilitated 
significantly the automated seizure analysis. In this study, an 
evaluation of the window size in automated seizure detection is 
proposed. The EEG signals from the University of Bonn was 
employed and segmented into 24 epochs of different window 
lengths with 50% overlap each time. Statistical and spectral 
features were extracted in the OpenViBE scenario and were used 
to train four different classifiers. Results in terms of accuracy 
were above 80% for the Decision Tree classifier. Also, results 
indicated that different window sizes provide small variations in 
classification accuracy. 

Keywords-epilepsy; EEG; seizure detection; window size; brain 
computer interface 

I. INTRODUCTION  

Epilepsy is a devastating brain disorder followed by 
seizures, which are repetitive episodes of temporary 
interruption or disturbance of communication between neurons. 
Many people experience seizures without a clear cause and 
almost one-third of the epileptic patients suffer from refractory 
seizures [1]. The latest facts render epilepsy a life-threatening 
disorder and a major factor responsible for mortality in 
developed and developing countries [2]. Depending on the 
brain areas that participate during epileptic activity, seizures are 
divided into two fundamental types: partial (affects only a 
single brain area) and generalized (affects more than one 

region). These two main types are subdivided forming a bigger 
list of several seizure types [3]. The Electroencephalogram 
(EEG) is used to monitor and diagnose epilepsy. The brain 
activity is monitored through the EEG which is usually 
performed in a well-equipped hospital. The electrodes are 
either attached to the surface of the skull (scalp EEG – sEEG) 
or placed invasively inside the brain (intracranial EEG – 
iEEG). Furthermore, the EEG recording is usually performed 
after a seizure episode and before the next seizure occurrence 
(interictal period). Rarely an EEG recording captures the 
seizure onset (ictal period) and it usually happens in a 24-hour 
monitoring. The complexity of EEG recordings and the huge 
amount of data, led to the development of methods for 
detecting different patterns of brain activity [4] and automated 
seizure analysis [5]. Generally, these methods follow a pattern 
recognition approach, which contains feature extraction and 
classification. The signal is usually decomposed in epochs of 
specific duration in an attempt to better capture the transient 
occurrences of the EEG. Several time-frequency analysis 
methods have been proposed such as Discrete Wavelet 
Transform [6-8], Wigner-Ville distribution [9], Empirical 
Mode Decomposition [10-11] etc. Significant features are 
extracted from the decomposed signal and are then used to train 
a classifier. Usually, the raw signal is initially analyzed in 
epochs of small duration and the window size is of primary 
importance in automated seizure detection.  

Recent breakthroughs in computer-aided analysis initiated 
the development of Brain Computer Interface (BCI) systems, 
which are more user-friendly and provide direct 
communication with the user’s brain in real-time without any 
possible movement [12]. In this work, a method for seizure 
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C. Feature Extraction 

A set of 8 features was extracted in each epoch, forming the 
feature vector that used in the classification. The plugins 
“Univariate Statistics” and “Spectral Analysis” were employed 
in the OpenViBE scenario to compute four time-based features 
namely: 

 mean value, 
 variance, 
 range (maximum value – minimum value), 
 median value, 

and four spectral features based on Fast Fourier Transform 
being: 

 the spectrum amplitude (the power of the signal) in alpha band (8-12Hz), 
 the spectrum amplitude in beta band (12-25Hz), 
 the spectrum amplitude in theta band (4-8Hz), 
 the spectrum amplitude in delta band (1-4Hz), 

The resulting feature set was used to train four well-known 
classifiers, being Naïve Bayes, Multilayer Perceptron, Support 
Vector Machines and Decision Tree. 

D. Classification 

To evaluate the proposed method and the window size in 
classification results, four of the most sophisticated supervised 
classifiers were used.  

1) Naïve Bayes (NB) 

Naïve Bayes (NB) is a simple classifier that combines a 
probability model with a decision rule. The classifier operates 
on the simplest assumption that the features are conditionally 
independent and is based on Bayes decision theory, wherein 
the posterior probability of each class is calculated by the 
likelihood and the prior probability [15]. The ultimate goal of 
the classifier is to minimize the probability of classification 
error and maximize the posterior probability. A small number 
of training data is needed for the classifier to estimate the 
necessary classification parameters and in conjunction with the 
less time complexity, this simple classifier has preferred in 
complex classification problems.  

2) MultiLayer Perceptron (MLP) 

The Multilayer Perceptron (MLP) classifier is a neural 
network with at least three layers of nodes. MLP utilizes the 
backpropagation techniques for training and maps non-linear 
input data into a space, where it becomes linearly separable. In 
order to train a MLP classifier and perform correct pattern 
classification, the connection weights after each processing of 
data are adjusted, based on the comparison between the error in 
the output and the expected result [15]. 

3) Support Vector Machines (SVM) 

Support Vector Machines is a machine learning technique 
for linear and non-linear classification problems. The non-
linear input data is projected into a high-dimension feature 
space in order to be linearly separated. This projection is 
performed by the kernel function, which can be either a linear 

or a polynomial function, the radial basis function or the 
sigmoid kernels. The gap that separates the data is called 
hyperplane and the major goal of the algorithm is to find the 
optimal separating hyperplane that maximizes the distance 
between the data and minimizes the classification error [15].  In 
our experiments, the radial basis function was used.  

4) Decision Tree (DT) 

A Decision Tree (DT) classifier is a straightforward 
classifier based on a series of decision rules. The root node of 
the tree is displayed at the top and is successively connected 
with other nodes through links or branches, until no further 
links to other nodes exist (leaf nodes). According to the DT 
classifier, only one link can be followed each time and the 
subsequent node becomes the root node of the next sub-tree. 
The procedure is repeated until a leaf node is reached, leading 
to no further decision and the category label is read [15]. 

III. RESULTS AND DISCUSSION 

The four classifiers were trained and tested according to the 
10-fold cross-validation technique. To evaluate the 
classification results of the experiments and thus, the window 
size the accuracy was calculated from the correctly classified 
instances: 

 =        (1) 

 
The obtained statistical results of the 24 experiments for 

each classifier are presented in Table II.  

TABLE II.  RESULTS 

Epoch 
(sec) 

Over-
lapping 

(sec) 

Correctly Classified instances (%)

NB MLP SVM DT 
1 0.5 59.11% 72.41% 67.51% 85.95% 
2 1.0 63.67% 75.56% 70.35% 79.06% 
3 1.5 66.37% 78.02% 70.46% 82.05% 
4 2.0 67.47% 78.73% 70.11% 83.50% 
5 2.5 68.97% 79.47% 68.87% 83.60% 
6 3.0 70.32% 81.72% 70.00% 84.87% 
7 3.5 70.23% 81.10% 69.21% 85.45% 
8 4.0 70.03% 80.17% 68.55% 85.17% 
9 4.5 71.90% 80.91% 68.45% 85.19% 
10 5.0 72.11% 77.75% 63.63% 83.83% 
11 5.5 72.08% 83.15% 68.10% 85.48% 
12 6.0 73.33% 81.95% 68.46% 85.39% 
13 6.5 73.52% 81.03% 67.44% 83.72% 
14 7.0 74.01% 81.23% 67.83% 84.25% 
15 7.5 75.29% 81.98% 68.34% 82.71% 
16 8.0 75.61% 83.35% 66.57% 84.51% 
17 8.5 74.58% 83.53% 68.19% 83.75% 
18 9.0 75.85% 82.39% 67.72% 82.31% 
19 9.5 75.37% 82.18% 68.31% 82.60% 
20 10.0 75.57% 83.00% 67.87% 81.23% 
21 10.5 81.23% 82.79% 67.62% 84.46% 
22 11.0 76.48% 82.04% 68.87% 82.82% 
23 11.5 77.34% 82.24% 68.16% 83.77% 
24 12.0 77.55% 81.70% 68.82% 85.63% 
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The best classifier for epochs of 1 second with 0.5 seconds 
overlap, is DT with 85.95% followed by MLP with 72.41%, 
SVM with 67.51% and NB with 59.11%. For epochs lasting 2 
seconds with 1 second overlap, the best classifier is DT with 
79.06%, followed by MLP (75.56%) and SVM (70.35%) and 
the worst classifier is NB with 63.67% accuracy. For windows 
of 3 seconds with 1.5 seconds overlap and 4 seconds with 2 
seconds overlap, DT remains the best classifier (82.05% and 
83.50% respectively) and the lowest accuracy (66.37% and 
67.47% respectively) is obtained with NB as well. For the next 
12 window sizes the DT outperforms (ranging from 82.71% to 
85.48%) and the lowest values (ranging from 63.63% to 70%) 
are obtained with SVM. At the same time, MLP indicates 
accuracy ranging from 77.75% to 83.35%, whereas NB shows 
lower accuracy, ranging from 68.97% to 75.61%, and in some 
cases perform almost the same with SVM (for windows of 5sec 
and 6sec duration). For the next 4 window sizes the DT and the 
MLP presents almost the same accuracy and none of the two 
classifiers is considerably better than the other. Accuracy for 
NB is about 75% for these four window sizes and SVM does 
not exceed 68%. Finally, for the last four window sizes, DT is 
the best classifier (ranging from 81.23% to 85.63%) followed 
by MLP (ranging from 82.04% to 83%), NB (ranging from 
75.57% to 81.23%) and SVM (ranging from 67.62% to 
68.87%). The smooth and small changes of the obtained results 
for each classifier and the comparison between their 
performances are depicted in Figure 3. From Figure 3 it can be 
observed that while the window size is increasing, the 
classification results for NB, MLP and DT are slightly higher, 
without great variations (in most cases not greater that 3%). 
The lowest accuracy for NB and MLP is 59.11% and 72.41% 
and the highest 81.23% and 83.53%, respectively; however, 
despite the big difference between the lowest and highest 
values, the intermediate values range from 1% to 3%. The best 
classification accuracy is provided with DT with lowest value 
79.06% (2 seconds window with 1 second overlap) and highest 
85.63% (24 seconds with 12 seconds overlap) whereas SVM 

showed the worst classification accuracy (lowest value 63.63% 
and highest 70.46%). Also, the best accuracy for DT, MLP and 
NB (above 80%) is obtained for windows of 21 seconds with 
10.5 seconds overlap, whereas the SVM seemed to be the 
weakest classifier compared to the others. 

The epoch duration has also been a focus point for several 
researchers. Recently [16], a method based on dynamic 
principal component analysis (DPCA) and energy was 
proposed. The authors evaluated four window sizes of the EEG 
segments, being 64, 128, 256 and 512 samples per window 
(approximately 0.37, 0.74, 1.47 and 2.95 seconds respectively). 
Results showed minor increase when signals were segmented 
in 512 samples epochs per window. In [17], authors conducted 
4 experiments to find the optimal window size between 4 
options. In the presented method the Permutation Entropy was 
calculated from nonoverlapping epochs of 0.25, 0.5, 0.75 and 1 
second and was used to train a SVM classifier. Results in terms 
of F1 score showed small deviation (about 5% for overall F1 
score). An extension of the above mentioned approach was 
presented in [18] wherein the same group of authors 
investigated among other, whether the overlapping plays 
significant role in seizure detection or not and they proposed a 
method based on Weighted Permutation Entropy (WPE). In 
this approach, 200 signals of the Bonn database were employed 
and segmented in epochs of approximately 0.35 seconds 
duration with overlap (OV) (128 samples per window) and 
without overlap (NOV) (164 samples per window). The 
method was evaluated on SVM and Artificial Neural Network 
(ANN) classifier and results indicated that epochs with 50% 
overlap provided slightly higher accuracy (2.25% overall 
accuracy for SVM and ANN). In our experiments, 24 window 
sizes are evaluated and the classification accuracy slightly 
arises as the window size increases for all classifiers. The best 
classifier is DT with accuracy ranging from 79.06% to 85.95%, 
followed by MLP ranging from 72.41% to 83.53%, SVM from 
67.51% to 70.46% and NB from 59.11% to 75.61%. A 
comparison table is presented in Table III. 

TABLE III.  COMPARISON TABLE 

Reference Window size Signal analysis Features Classifier 
Classification 
Problem 

Performance Metrics 

[16] 

4 non-overlapping 
window sizes ranging 
from  
0.37-2.95 sec 

Dynamic Principal 
Component Analysis 

Energy 1-NN 
Z-S 
ZONF-S 

Accuracy: 99.9%-100% 

[17] 

4 non-overlapping 
window sizes ranging 
from  
0.25-1 sec 

Raw segmented data 
Weighted Permutation 
Entropy 

SVM 

Z-S 
O-S 
N-S 
F-S 

Average F1 values for each 
window size: 0.866 - 0.917 

[18] 

0.35 sec non-
overlapping window 

Raw segmented data 
Weighted Permutation 
Entropy 

SVM 
 

Z-O-N-F-S 

NOV Accuracy: 90.63 -
92.88% 

0.35 sec with 50% 
overlap window 

OV Accuracy: 91.63 -
93.88% 

This 
work 

24 overlapping 
windows with 50% 
overlap ranging from 1-
24sec 

Raw segmented data 

Mean, Range, Variance, 
Median, Spectral 
amplitude in alpha, beta, 
delta, theta band 

Naïve 
Bayes, 
MLP, 
SVM, DT 
 

Z-O-N-F-S 

NB Accuracy: 59.11% -
81.23% 
MLP Accuracy: 72.41% - 
83.53% 
SVM Accuracy: 63.63% - 
70.46% 
DT Accuracy: 79.06% - 
85.63% 
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