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Abstract—Process capability analysis is frequently employed to 
evaluate if a product or a process can meet the customer’s 
requirement. In general, process capability analysis can be 
represented by using the process capability index. Until now, the 
process capability index was frequently used for manufacturing 
processes with quantitative characteristics. However, for a 
process with qualitative characteristic like cutting surface, the 
data’s type and single specification caused limitations of using the 
process capability index. Taguchi developed a surface quality by 
abrasive water jet cutting or quadratic quality loss function to 
address such issues. In this study, we intend to construct a 
measurable index which incorporates the process capability index 
philosophy concept to analyze the process capability with the 
consideration of the qualitative surface roughness. The 
manufacturers can employ the proposed index to self-assess the 
process capability. The objective of this study was to examine the 
effects of abrasive water jet machining variables like cutting 
speed of the stainless steel material. The roughness of the varied 
surface through the cut depth was also measured and determined 
as a process capability index of 3 zones machined surface. 

Keywords-abrasive water jet cutting; process capability; cutting 
speed; surface roughness; stainless steel 

I. INTRODUCTION 
The abrasive water jet (AWJ) cutting technique is one of 

the most rapidly improving technological methods of cutting 
materials. In this cutting technique, a thin, high velocity water 
jet accelerates abrasive particles that are directed through an 
abrasive water jet nozzle at the material to be cut. AWJ is one 
of the most widely used technological methods. The 
advantages of AWJ cutting include the possibility of cutting 
almost all materials e.g. Titanium, Aluminum, the absence of 
thermal distortion, high flexibility, small cutting forces and 
being environmentally friendly. Due to these capacities, this 
cutting technique is more cost-effective than traditional and 
non-traditional machining processes [1-9]. The mechanism and 
rate of material removal during the AWJ cut depends on both 
the type of abrasive and the range of process parameters. A 
considerable number of studies have investigated the effects of 
cutting velocity, spreading distance, water pressure, abrasive 
grain size and other factors on the surface roughness [6-12]. 
Thus, it is necessary to have a deeper knowledge of the optimal 
conditions of operation, which will allow us to ensure a good 

surface roughness. A large amount of research effort has been 
made, in recent years, to understand the AWJ process and 
improve its cutting performance such as the depth of cut and 
surface finish for various materials [11-12]. Researchers used 
granite samples for their experimental studies and investigated 
the effect of process parameters on rock cutting. It was found 
that entraining of abrasive particles increase the cutting 
capability of water jets and increases of water jet pressure 
allow obtaining deeper cut depths. Process capability analysis 
(PCA) [13-16] is frequently employed by the manufacturers to 
evaluate if the capability of process can meet the customer’s 
requirement. Process Capability Indices (PCIs) are a 
quantitative measurement of the process capability in most 
manufacturing industries. PCIs, such as Cp and Cpk are 
commonly used for most manufactures [15–16], can frequently 
measure the process capability for the quantitative response for 
example surface roughness. Authors in [15] evaluate the related 
scale of the process mean with the tolerance specification (i.e. 
the difference between the upper tolerance limit and the lower 
tolerance limit). Cp evaluates the related scale of the 
specification’s tolerance with process’s tolerance. While Cpk 
simultaneously, evaluates the centering degree and the 
dispersion degree. These PCIs will make some adjustments if 
there are necessary particulars like the unilateral specification. 
For the quantitative type, the theories on PCA and PCIs are 
well developed in [15-17] but qualitative data type may exist 
during the manufacturing environment, e.g. the production 
parts, pistons, gears, the integrated circuit manufacturing, so, 
the process capability analysis for qualitative data will be an 
important issue to study. However, most studies only focus on 
the PCA application for the quantitative response data, and the 
qualitative response data is seldom mentioned [16-17].  

Several difficulties can be mentioned as: (i) the target of the 
qualitative data may lead to unobvious centering evaluation, 
e.g. the target will be set as zero defect, (ii) the limitation of the 
unilateral specification, especially only the upper specification 
exists, e.g. the defect rate may be less than 1% and (iii) the 
quantitative data utilizes the process mean (µ) and process 
deviation (σ) to compute the PCIs, however, the qualitative 
data cannot directly utilize them to compute the PCIs. Under 
the global market environment, to realize the process capability 
comparison with other competitors can provide helpful 
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III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Surface Roughness of the cut surface  
After machining operations by AWJ cutting process, the cut 

surface was monitored by optic microscope and is presented in 
Figure 3 which shows the very good surface cut of the upper 
edge beginning of the cut (zone 1) and the bad surface 
machined in the lower edge, ending of the cut (zone 3). In this 
zone there is a presence of the striation marks (Figure 3(b)).  

 

 
(a)    (b) 

Fig. 3.  Photograph of machined surface after AWJ Cutting (a) Good 
surface at low cutting speed, (b) Coarse surface at high cutting speed. 

Obtained photographs were analyzed and edited with the 
use of image manipulation software. Cut surfaces were divided 
in two zones; upper zone (beginning of the cut with no visible 
presence of machining marks), and lower zone, (ending of the 
cut with visible machining marks) as shown in Figure 3(b). 
Lines outlining machining marks and showing their 
approximate curve angle were added. For the surface cut with 
the highest cutting speed V equal to 250mm/min, numerous 
grooves and elevations in the lower zone are clearly visible 
marks (Figure 3(b)). With decrease in the cutting speed an 
improvement of surface quality in its lower part can be 
observed. For the lowest used cutting speed, machining marks 
are fewer and faintly visible. It can be observed that the width 
of the zone with visible machining marks and their curve angle 
increases with the growth in cutting speed. The presence of 
machining marks in the lower part of cut surfaces is linked to 
the decrease in kinetic energy of abrasive particles in AWJ.  

After machining by AWJ cutting process, with different 
cutting speeds, we measured the surface average roughness Ra 
in three zones (see Figure 4). Table III presents Ra of the all 
work pieces, in the three zones. It was observed that the 
sensitivity of measured parameters is directly related to both 
cutting speed and distance from upper cut edge. With the 
increase in cutting speed V, a degradation of surface quality 
defined by analyzed parameters for zone 2 and zone 1 planes 
was observed (Figures 3 and 5). 

Based on the analysis of Table III and Figure 5, it can be 
stated that the cutting speed V, has a significant influence on 
the surface roughness of the cut surfaces. Also, the distance 
from the upper cut surface edge directly affects surface quality 
and measurement results. In the area where AWJ enters the cut 
material, decrease in cutting speed by around 20% (from 
V=250mm/min to 200mm/min) results in drop of roughness 
parameter by approximately 14% in zone 3. Further decrease of 
the cutting speed to 150mm/min (decrease by approximately 
40%) results in surface roughness parameters dropping by 26% 
in zone 3.  

 
Fig. 4.  Measurement zones of Ra of the machined surface. 

A downward trend can also be seen when analyzing the 
measurement results taken in the center of cut surfaces. 
However, this time the drop is more significant by 20% for the 
medium cutting speed and 40% for the lowest used cutting 
speed. In the lower part of the studied cut surfaces the sharpest 
growth in values of measured parameters can be seen for the 
highest used cutting speed of 250mm/min. For the lower 
cutting speeds, 150mm/min, the increase in roughness is not as 
intense when compared to the values observed for the upper, 
parts of cut surfaces (zone 1). This can be caused by the drop in 
the kinetic energy of abrasive water jet being less intense for 
lower cutting speeds. In this part of the surface, biggest 
increases in surface quality can be achieved by using the lowest 
researched cutting speed of 150mm/min. Figure 5 shows an 
excellent surface roughness of the machined surface in the zone 
1, and a bad surface quality in the zone 3, for cutting speed of 
250mm/min. 

IV. PROCESS CAPABILITY 

A. Process Capability 
Process capability Cp and PCI Cpk are considered short-

term potential capability measures for a process. In Six sigma, 
we want to describe processes quality in terms of sigma 
because this gives us an easy way to talk about how capable 
different processes are by using a common mathematical 
framework. In other words, it allows us to compare, for 
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TABLE IV.  SURFACE ROUGHNESS RA IN THE 3 ZONES  

Exp N° V (mm/min) Ra-z1 (µm) Ra-z2 (µm) Ra-z3 (µm) 
1 150 2.58 4.02 5.3 
2 150 2.79 3.3 5.7 
3 150 2.81 3.78 5.0 
4 150 2.66 3.9 5.6 
5 150 2.77 3.42 5.11 
6 150 2.63 3.74 5.46 
1 200 2.93 3.8 6.32 
2 200 2.98 3.78 6.23 
3 200 3.13 3.99 6.14 
4 200 3.02 4.01 6.41 
5 200 2.87 4.11 6.17 
6 200 2.94 3.89 6.39 
1 250 3.44 5.24 7.31 
2 250 3.48 5.18 7.22 
3 250 3.33 5.46 7.14 
4 250 3.22 5.25 7.41 
5 250 3.52 5.31 7.17 
6 250 3.41 5.12 7.34 

 

 
Fig. 6.  Process capability report for Ra in zone 1 of the cut surface. 

 

 
Fig. 7.  Process capability report for Ra in zone 2 of the cut surface. 

 
Fig. 8.  Process capability report for Ra in zone 3 of the cut surface. 

V. CONCLUSION 
In this study, we constructed a quantitative measurement 

PCI for the qualitative response of the surface roughness. The 
quantitative measurements are based on the Taguchi’s quality 
function philosophy and PCI concept. It is a ratio deriving from 
the customer’s quality loss with respect to the actual process’s 
quality loss. By employing the proposed PCI, the 
manufacturers can assess and meet the customer’s requirement. 
The analysis of the machined surface by AWJC process 
extracted the following conclusions:  

• Edge quality of the cut surface is a function of cutting 
speed. 

• With decrease in cutting speed, cut surface quality visibly 
improves, which is most clearly noticeable for the lower 
part of examined cut surfaces. The difference in the 
measured value of Ra parameter is about 26% between the 
highest and lowest researched cutting speeds, in favor of the 
latter.  

• Cut surfaces are characterized by the occurrence of two 
zones. In the first zone, there are no visible machining 
marks. In the second one, machining marks can be easily 
observed. The second zone width and the visibility of 
machining marks is closely related to the cutting speed.  

• Results of this research can have a practical use in 
determining surface roughness parameters best suited to 
adequately evaluate cut surfaces of elements machined with 
the use of AWJ. 

• This process will produce conforming products, in zone 1 
and zone 2, as long as it remains in statistical control. 

• The process capability report for Ra in zone 3, gives a bad 
or not adequate process in this zone, So, a new process 
must be chosen. 
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