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Abstract—The concept of degrees of freedom (DoF) has been
adopted to resolve the difficulty of studying the multi-user
wireless network capacity regions. Interference alignment (IA) is
an important technique developed recently for quantifying the
DoF of such networks. In the present study, a single-hop
interference network with K transmitters and N receivers is
taken into account. Each transmitter emits an independent
message and each receiver requests an arbitrary subset of the
messages. Using the linear IA techniques, the optimal DoF
assignment has been analyzed. Assuming generic channel
coefficients, it has been shown that the perfect IA cannot be
achieved for a broad class of interference networks. Analytical
evaluation of DoF feasibility for general interference channels
(IFCs) is complicated and not available yet. Iterative algorithm
designed to minimize the leakage interference at each receiver is
extended to work with general IFCs. This algorithm provides
numerical insights into the feasibility of IA, which is not yet
available in theory.
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1. INTRODUCTION

Despite the intensive research on multi-user wireless
communication networks over the past three decades, the
subject is still not well understood from information-theoretic
perspective. Capacity limits of many multi-user networks are
still unknown (even for a small number of users). For example,
the capacity region of a two-user single-antenna interference
channel (IFC) is still unknown, though the region can be
bounded up to a constant value [1]. Researchers have derived
various approximations of the capacity region of the IFCs. For
example, the maximum total degrees of freedom (DoF)
correspond to the first order approximation of the sum-rate
capacity in high SNR regime. DoF is not a new concept, it is
widely known as the multiplexing gain in point-to-point
communication scenarios. It was termed as spatial DoF in [2],
referring to the maximum multiplexing gain. In the present
study, the maximum multiplexing gain is presumed to be the
total DoF. The study of DoF of interference networks was
pioneered in [3]. In [2], the total DoF of two-user multiple-
input multiple-output IFC is provided. Interference alignment
(IA) is a powerful scheme developed recently for quantifying
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the DoF region of multi-user networks. IA refers to the
construction of signals in such a way that their mutual
interference aligns at the receivers, facilitating simple
interference  cancellation  techniques. The remaining
dimensions are designated for communicating the desired
signal, keeping it free from interference. IA was first
introduced in [4], and clarified in [5]. The analysis of DoF is
shown to be very useful in revealing the capacity potential of
the IFCs. The channel capacity of IFC is limited with large
number of users. Authors in [3, 6], showed that the total
number of #=KM/2 DoF can be achieved asymptotically via
infinite time (frequency) expansion under block fading channel
for a K-user M antenna IFC. This result indicates that the
capacity of each user is unbounded regardless of the user
number K. The achieving method is based on IA.

The principal assumption enabling this surprising result is
that the channel extensions are exponentially long in K and are
generic (e.g., drawn from a continuous probability
distribution). However, there is an important distinction
between perfect IA schemes and partial IA schemes. Perfect IA
schemes are able to exactly achieve the outer bound of the DoF
with a finite symbol extension of the channel. In contrast,
partial IA schemes pay a penalty in the form of the overflow
room required to “almost” align interference. Study of the
design and feasibility of linear beamforming for IA without
symbol extensions has received significant attention [7-10].

In general, linear IA can be described by a set of bilinear
equations which correspond to the zero-forcing conditions at
each receiver. One can count the number of “independent
unknowns” and the number of scalar equations in this quadratic
system defining IA to verify if the total number of variables
exceeds the total number of constraints in the system of
equations. If a system has more variables than constraints, it is
called a proper system. Otherwise, it is called an improper
system [7]. While it is known that almost all improper systems
are infeasible [8-9], the feasibility of the proper systems is still
an area of active research. In [8-10], a set of sufficient
conditions for feasibility are established. In this paper, we
consider the case of interference networks with general
message demands. In this setup, there are K transmitters and N
receivers, each equipped with M antennas. Each transmitter
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emits a unique message and each receiver is interested in an
arbitrary subset of the messages. This construction is a
generalization of the multiple unicasts scenario considered in
[6], to the case where each receiver is interested in an arbitrary
subset of the transmitted messages. DoF region for this
network is evaluated in [11]. In this work, we evaluate how to
optimally allocate DoFs to the transmitters of this architecture
to achieve the total DoF of such a network.

As an alternative to the closed form designs, several
algorithmic approaches have been proposed in the literature.
Many of those methods aim to minimize the interference
leakage at each receiver so that -at the best case-the [A can
perfectly be attained. The suggested insight for their
effectiveness is that when perfect IA is possible, the
interference leakage will be zero and such algorithms may
obtain the optimal solutions. In this paper, we are mostly
concerned with the feasibility of the perfect IA. We have
extended the iterative IA algorithm developed in [12], to the
case of general IFC to evaluate IA feasibility of different
scenarios.

The rest of the paper is organized as follows. The system
model is introduced in Section II. In Section III, it is argued
why linear IA scheme, over a single antenna IFC, cannot
achieve the total number of DoF with a limited number of
channel extensions. In Section IV, an iterative IA algorithm is
proposed to achieve optimal DoF of an IFC with general
message demands. Simulation results are provided in Section
V, and concluding remarks are presented in Section VI.

II. SYSTEM MODEL

Consider a KxN user single-hop interference network with
K transmitters and N receivers. We assume that all the
transmitters and receivers have M antennas. An illustration of
the system model is shown in Figure 1. Each transmitter has
one and only one independent message. Each receiver can
request an arbitrary set of messages from multiple transmitters.
Let S;, j €[N] be the set of indices of those transmitted messages
requested by receiver j, where [N] is defined as [N]={1,.....,N}
and §; is the set of indices of those transmitted messages
contributing to the interference at receiver j. Obviously,
S = §; U .S is the set of all active transmitters, where active

transmitters are defined as the transmitters with assigned DoF
greater than zero. All transmitters share a common bandwidth
and want to achieve the maximum possible sum rate along with
a reliable communication. Channel output at receiver j and over
time slot , # € N is characterized by the following input-output
relationship:

YUl =) xW @) + AU xBt) . ..
+HVE 0 x K (1) + 20l (@), M

where /<j<N is the user index, XM 1) is the Mx1 transmitted
signal of transmitter k, H¥(1), 1<k<K is the MxM matrix of
fading factors of the channel from transmitter k to receiver j.
The channel fading factors at different time instants are
assumed to be independently drawn from a continuous
distribution. Z[’J(t) is the additive white Gaussian noise at
receiver j. The noise terms are all assumed to be drawn

independently from a Gaussian independent identically
distribution with zero mean and unit variance. It is also
assumed that all transmitters are subject to a power constraint
P:

E(|X:(®)|*) < P, ke [K], (1)

where E is the expectation taken over time. Hereafter, time
index is omitted for convenience. Let 7 denote the duration of
the time expansion in number of symbols. From this point and
below, we use uppercase bold fonts to denote the time-
expanded signals.

HM=diagH™ (1), H™2), , ... H (%)), is a MTxM7 block
diagonal matrix. Denoting the beamforming matrix of the
transmitted message k as V), the extended channel model can
be described as follows,

vVl —gbilvixt  gh2yveRixE...
+HUKIVIEIXIK] 4 7l

where YUl=/Y ()" Yl 2)T . YIm)'J" is the Mrx1 received
signal vector over the extended channel, V™ is the Mzxd"
beamforming matrix of transmitter &, and d¥ is the number of
independent signal symbols transmitted from transmitter . X
is a d™ x ] vector of the transmitted symbols and ZUlis a Mrx1
received noise vector at receiver j. Perfect channel state
information (CSI) is assumed to be available at receivers and
global CSI at transmitters.

@

h
TX; ¢ hil ¥ RX;
hni
h1a ; ’
™ 2 *RX;
. hi .~ ' ‘ .
hak ™
hNK
Fig. 1. K x N user IFC model.

Authors in [11], have referred to the aforementioned setup
as an interference network with general message demands and
have derived DoF region of this setup. Denote the capacity
region of such a system with power constraint P as C(P),
corresponding DoF region is defined as

D :{d = (M, d?, ... ¥y e RE

3(R1(P), Ra(P), ..., Rk (P)) € C(P), (€)
such that d*) = lim Bi(P) € [K]}
The total DoF number is defined as:

P=o0 log(P)’
D, = max Y ¥ dl¥, {dl1], dl? ... 451} eD.
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III. LINEAR VECTOR IA LIMITATION

DoF region for the setup described in Section II has been
derived by [11], as follows,

D=

(5)
deR Y dM pmax(alf) <M, vje[N],
keS; heSi

where Sj is the set of message indices requested by receiver
7,J € [N]. Optimal DoF assignment in an IFC with general

message demands is obtained by solving the following linear
programming problem;

K
d* = arg maXZ d,
k=1

st z=XM,
d > 0. (6)

where z is defined as a G*/ vector consisted of scalar elements
2% = Spes, A +maxgcg d. 23 M implies that all
elements of z should be smaller than M. The solution to the
feasibility problem is not known in general. In other words,
given a set of randomly generated channel matrices and a
degree-of-freedom allocation [dY), d?, ... dlX]], it is not
known if one can almost surely find the transmit and receive
filters that will satisfy the feasibility conditions. If we look at
the problem of finding the precoding and zero-forcing matrices
when the channel coefficients are arbitrary and given, the
problem is computationally intractable. In particular, [&]
established that for an arbitrary K-user MIMO IFC, checking
the achievability of a certain DoF tuple [dm L2 d[K]] is
NP-hard when each user and transmitter has more than 2
antennas. The notion of regular IFC will be introduced below
and it will be shown that perfect IA is not feasible for single
antenna regular IFC. The distributed IA developed in this paper
will be useful in numerically evaluating the feasibility problem
for general IFC. Regular networks are defined as IFCs for
which the only optimal DoF assignment is equal DoF
assignment for all active transmitters. Theorem 1 implies that
an IFC in which all prime receivers request the same number of
transmitted messages and each transmitter sends message to an
equal number of prime receivers is a regular network.

e Theorem 1. The only DoF point that achieves total number
of DoF of an IFC where all receivers request the same
number of transmitted messages and each transmitter sends
message to equal number of receivers is

d:[ M M Mj @)
p+1 p+1  p+1

Proof. Maximum total number of DoF for this network is

obtained to be ——, where f is the number of requested

messages for each prime receiver [11]. Obviously, total DoF is

1 _

achieved by d % . It is now intended to show that this is
+

the only DoF point that achieves total number of DoF. It is
worth noting that as prime receivers are addressed those
receivers whose requested message sets are not a subset of any
other requested message set. If Theorem 1 is not true, there is at

least one dl¥!, k € [K] which is strictly greater than - We
would also have the following lemma:

In the specified channel structure, we should have

max(d) >

Vi€ [G], 8)
k?ESj

M
B+1

where G is the number of prime receivers.

Assume that there is a ] = j() where
maxpes, (et s which implies that
d¥ < B—I‘fr[l Vk € S, Thus, using (5), we will have
Z dlkl & Z a4 Z k!
ke[K] keSy, keS;,
b
< M — max(d*) + ) ¥
kESjo kegjo (4)
M(K-1- MK
<y M b _
1+ 1+8
K
= dsum < m

The first equality, a, is derived from the fact that
[K] = S, USjy, b is derived from DoF region inequalities
in (5) and ¢ is implied from the assumption that

(al¥ly < ﬁv k € S;, Equation (9) contradicts the

assumption that this DoF assignment achieves total DoF
number. Therefore, the lemma is valid.

Based on (5), in order to characterize DoF region, we
should consider G inequalities of the form

> dH +max(a) <M, Vie[Gl  ©)
keS; kes;

Since each message is requested by Gﬁ/K receivers,
summing all G inequalities, we have

Go/K Y. d¥+ N &, <GM (1)

ke[K] JjelG]

where d?m,,m is defined as ¢7,,, = maxcs. dl¥l. Using the
fact that there is at least one d{mx strictly greater than %,
along with lemma 1, it is obtained that

MG ,

FE Y B (12)

substituting (12) in (11), we will have the following inequality:
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Gﬁ/Kde]Jr - <GM
ke[K] ’8+
VK (6)
= > dM < —,
ke[K] B+l

which contradicts the assumption that this DoF assignment
achieves total DoF number. Therefore, gl*] — % is the only

DoF point that achieves the total number of DoF of this
network.

e Theorem 2. Assuming that the channel coefficients are
generic, the total number of the DoF of a single antenna
regular interference network cannot be achieved using a
finite extension of the channel.

Proof. It should be noted that the regular IFC should have
more than 1 DoF, otherwise, the network is equivalent to a
broadcast or multiple access channel. Optimal DoF assignment
is not unique in this case. In fact, every K x/ vector d > 0 that
satisfies 30K dlk] = 1 achieves optimal DoF of this
network. For example, if a set, say S;, would have K or K-/
elements, receiver i and its corresponding transmitters can be
considered as a multiple access channel without losing any
DoF gain, and therefore the total number of DoF of this
network is 1. There is no need for IA in this case and simple
methods like time division based multiple access techniques
can achieve the total number of Dof of this structure. Consider
a special case of 6x3 user IFC with generalized message set,
the channel structure along with requested set of messages at
each receiver is shown in Figure 2.

 p PR S— v RX; | S={14)
h,
|\
h
h
™, 2 ¢ RX; [5,={2,5}
n
¥ h
hae
TX5 i RX3 53:{3,6}
hss
Fig. 2. 6 X 3 user IFC with general message demands.

The proof for the general case is similar. It is intended to
achieve the outer bound of 6/3 DoF for this setup. Consider 3
extensions of this channel. Over this extended channel,
consider a hypothetical achievable scheme where each of the 6
messages achieves 1 DoF if possible, using beamforming at
every transmitter and zero-forcing at every receiver. Note that
this is the only DoF point in achievable region that achieves
total number of DoF of this network, according to Theorem 1.

Let message Wk be beamformed along 3x1 vector VI
at transmitter k. Receiver j intends to decode Wk e S;
using zero-forcing. At receiver j, to decode 2 independent
messages WK ke S;, the vectors corresponding to the

desired messages should occupy 2 linearly independent
directions. Since signals come from a space of 3 dimensions,
the 4 interfering vectors must occupy the remaining 1
dimension. IA requirements can be written as follows.

span(H[]k]V[k]) = Span(H[jm]V[m])v k» m e gj (7)

Thus, the total dimension of the interference is 1 and
receiver j can decode all its desired messages. Along with the
above criteria, the desired signal vectors are required to be
linearly independent of the interference dimension at each
receiver. This requirement implies that,

D(span[U(S), U(S;))] = 3, (®)

Where D(S) is defined as the dimension of a subspace S,
U(S;) and U(S}) are the sets of the received signal vectors
corresponding to the desired and undesired signal vectors,
respectively, and 3 is the total subspace dimension available at
the receivers. For example, at user 1, U(Sj) is obtained as

H2vI 74V,

Observe that (14) is a set of bilinear equations in the
unknown precoding and zero-forcing filters. A feasibility
question is raised as to whether a system admits perfect IA or
not. Authors in [7] argued that when the channel coefficients
are selected randomly and independently, the proper systems
should have almost surely a perfect alignment solution. A set of
bilinear equations is called proper, in other words, perfect IA is
expected to be feasible almost surely when the number of
variables is less than or equal to the number of equations.
Moreover, [8] proved that improper system of equations is
infeasible when each transmitter uses only one beamforming
vector. It can be observed that the set of IA requirements, (14),
constitutes an improper set of equations. The number of
independent variables in this system can be obtained as

NvaLM dl*ly d[k+z (LM — nbhpl! = 18, (16)
k=1 j=1

where L is the number of channel extensions.
nll =3 s dl¥! is the number desired streams at receiver .

N, is less than the number of equations, N,, which is obtained
as

Flil — =24, 17

N, = Zn

where ﬁ[J] > ke

at receiver j. Therefore, using 3 extensions of the channel or 3
antennas at each node, we cannot achieve 6 DoF for this
network. In the following, it is proved that this system of IA
requirements is still infeasible using every finite extension of
the channel.

d[ is the number of interfering streams

Consider a 3n symbol extension of the channel over which,
according to Theorem 1, the only achievable scheme is the case
where each of the 6 transmitters achieves n DoF if possible,
using beamforming at every transmitter and zero-forcing at

every receiver. The 3nxn vectors V[j], j=1,...,6 should
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satisfy IA conditions along with the linear independence
condition. IA requirements at 3 receivers can be summarized as
follows,

span (H[jk]v[k]> = span (H[jm]v[m]> ,
Vk,m € S;.

)

Since diagonal channel matrices HU* are almost surely full
rank, after some algebraic manipulations, (18) becomes

span (TELV[“]) = span (V[U]) ’

B - - (10)
7j=2,3 VuGSlﬂSj, VkeSlﬂSj,
where Tg’]u matrices are obtained as follows,
-1
Tg]l — T[2]4 _ H[ZG} <H[16]> Cu
T3l (H[31]> H32 (H[12])_1 CMH[21]
(3] <H[34]> -t H32 ( [12]> -t C, HE24 (11
[3] (H[31]> ! H33) (H[15]> -t C,/H2
(3] 347 H33) () -1 [24]
T (H ) (H ) CyH2,
and Cy is defined as
Cyy = HIY (H[231>‘1 _ (12)

Assuming V [His of rank n, [13] has shown that (20) implies n
eigenvectors of TLJ’]U lie in span (V["]> ,u € S1. Since all

channel matrices are diagonal, the set of eigenvectors of
channel matrices, their inverse and product are column vectors

of the identity matrix. Define €; = [00 --- 1 --- 0]7 and
note that e; exists in span (V[“]) , Yu € Sy, therefore, the set

of equations in (19) implies that
e; € span (H[jk]V[k]) ,
v, k) € {1,2,3} x {1,...,6}

Thus, at receiver 1, the desired signal
HM v HI4VE4) is not linearly independent of the
interference signal, H[12}V[2], and hence, receiver 1 cannot
fully decode W and W* solely by zero-forcing the
interference signal. Therefore, if the channel coefficients are
completely random and generic, we cannot obtain 6/3 DoF for
the 6x3 user single antenna IFC through linear IA schemes.

(13)

Regular IFCs are mostly encountered in networks with few

users. We have evaluated optimal DoF assignment for 10°
random configurations of a 10x10 IFC. Roughly, 25% of the
evaluated networks were regular IFCs. It is implied that there

are many cases where perfect IA for a single antenna IFC is not
feasible.

IV. DISTRIBUTED IA ALGORITHM FOR GENERAL IFC

In general, the optimal DoF solution for each specific
configuration can be obtained by solving the linear
programming problem (6), using methods like simplex
algorithm. The closed form solution for each arbitrary
requested message set structure is not straightforward.
Moreover, analytical evaluation of DoF feasibility is not
straightforward. Interference can be aligned in networks with
single antenna nodes through the channel extension in
frequency or time as long as the channel is varying across
frequency or time. However, this approach requires long
symbol extensions. For example, the achievable scheme
presented in [11] uses at least 1536 extensions of the single 6x3
antenna introduced in Figure 2 to achieve d={1/3, 1/12, 1/24,
1/192, 1/1536} number of DoFs for the transmitters. Total DoF
number of 0.47 is achieved for this scheme which is still far
less than the optimal DoF of 2 for this channel. Due to these
difficulties, it is preferred if IA can be accomplished without or
with limited symbol extensions. Actually, IA schemes are most
likely to be used in MIMO networks. Feasibility of perfect A
is not yet available in theory for most MIMO networks.
Iterative algorithms provide numerical insights into the
feasibility of IA in these cases. In this section, distributed IA
algorithm presented in [12] is extended to be utilized for the
case of general IFC with multiple antenna nodes and with no
symbol extensions.

Based on the system model presented in Section II, IA
feasibility conditions are derived as follows,

UWTHUE VI — o, vk ¢ S,
rank (UUTHIVIY) = b, vice sy @)

while the rank condition is typically assumed to be
automatically satisfied, this is not true in the case of symbol
extensions because channel matrices cannot be assumed to be
generic. When no symbol extensions is applied and the MIMO
channels HV* are generic, the rank condition is satisfied with
probability one. In other words, with generic channels there is
no need to explicitly introduce the rank constraint into the
optimization problem. Equation (23) requires that at each
receiver, all interferences must be suppressed, leaving as many
interference-free dimensions as the DoF allocated to that
receiver.

The intention is to use alternating optimization procedure
similar to [12], to find the transmit precoding and receive zero-
forcing matrices. We start with arbitrary transmit and receive
filters V[k], Ul and iteratively update these filters to
approach TA. Alternating optimization procedure is realized by
switching the direction of communication. The total
interference leakage at receiver j due to all undesired
transmitters is given by:

70— Ty [UWQmUuq (24)
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where

k
Qil= Y PH by g lm (13)

Let us define <§k as the set of receivers that request
message from transmitter £, i.e., ?k ={4,j = [N],k € S;}
. In the reciprocal network, the total interference leakage at
receiver k due to all undesired @ transmitters

=
S={jji= [N]a k¢ Sj}is given by (26):

Tl _ gy [ﬁ[kﬁ@k}ﬁ[k}] , (15)

where
q _ PUl it et
— Z_: il (16)
j€Sk

is the interference covariance matrix at receiver k. The iterative
algorithm alternates between the original and reciprocal
networks. In the original network, each receiver solves the
following optimization problem.

min Tl (17)
ubl:mxnlilublublf=1

In other words, receiver j chooses its interference
suppression filter U to minimize the leakage interference

due to all undesired transmitters. The 117! dimensional received
signal subspace that contains the least interference is the space
spanned by the eigenvectors corresponding to the nll smallest
eigenvalues of the interference covariance matrix Q[j]. Thus,
the nl/l columns of U are given by:

where vp,[A] is the eigenvector corresponding to the nth

smallest eigenvalue of A].

For the second step, consider the reciprocal network
obtained by reversing the roles of the transmitters and the
receivers. The transmit precoding matrices in the reciprocal

network, v[ﬂ, are the receive interference suppression

matrices U from the original network. Each receiver in the
reciprocal network solves the following optimization problem.

min T 1l
T xam TR T =1 (30)
Similarly, the d!¥ columns of T [*! are given by:
B =@M a=1,. d¥ (31

The receive zero-forcing filters in the reciprocal network
are then used as the transmit precoding matrices in the original
network, and the algorithm iterates again. The iterations

continue in this manner until the algorithm converges. The
proof of convergence for this algorithm is similar to the one
presented in [12]. It can be observed that each step in the
algorithm reduces the value of the total leakage interference.
The total leakage interference for general IFC is defines as
follows,

N
Ly =Y 10, (32)
j=1

where 10 is defined in (24).

The algorithm presented in this section seeks perfect IA. In
particular it seeks to create an interference free subspace of the
required number of dimensions that is designated as the desired
signal subspace. However, note that perfect IA may not always
be feasible. In such scenarios, the network structure should be
reconfigured. Simulation results indicate that residual
interference due to the imperfect IA significantly degrades the
achievable sum rate performance in high signal to noise ratios.
We can either reduce the number of transmitted streams,
increase the number of receive antennas, use relays in the
network to accommodate 1A, or use channel extension to make
IA feasible. In the following, we will consider the case of
reduced number of transmitted streams (RNS) and increased
number of receive antennas (INA) along with the case of
optimal DoF assignment (ODA).

V.  SIMULATION PESULTS

In this section we run simulations to illustrate practical
feasibility of the optimal DoF assignment. Consider the 6x3
user regular IFC shown in Figure 2. It is proved that perfect IA
is not feasible for this network, assuming single antenna nodes.
We consider a MIMO interference channel where each
transmitter/receiver is equipped with 3 antennas. Optimal DoF
assignments for this structure is obtained as d’’=1, k=/6]. The
system of bilinear equations for IA requirements of this
network constitutes an improper system because the number of
the independent variables is 18 which is less than the number
of equations which is 24. Therefore, we expect the perfect IA
to be still infeasible. This fact is confirmed with simulation
results.

We allocate power 1/d to each column of the ;)recoding
matrices, and set the noise power level to =107 where
P=[0:10:60]dB. Final results are obtained by averaging over
200 channel realizations, where each channel element is i.i.d.
zero mean unit variance circularly symmetric complex
Gaussian. We run 10* iterations of the extended minimum
leakage algorithm for each simulation. We plot the sum rate of
each system. The sum rate is computed as

R = Z;V=1 log det (Id[j] + (0L + Q[j]Q[j]T)fls[j]S[j]T)’

where SV is defined as the covariance matrix of desired signal
for receiver j. It is observed in Figure 3 that the sum rate of
ODA case is limited with residual interference at high signal to
noise ratios. Sum rate performance is also plotted for two cases
of RNS (d/=0, d™=1, k=2) and INA (4 receive antennas). We
compare the performance of the iterative IA algorithms for this
channel with orthogonal schemes and isotropic transmission.
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The sum rate for the orthogonal scheme is calculated assuming
equal time sharing for the users, and with power 6P per node.
The isotropic transmission case refers to the case where each
transmitter sends d=1, k=[6] stream of equal power
regardless of the channel information.

120

—=—ODA

—*— RNS
100 - —>— INA .
—x— TDMA Scheme
—— SO Design
g 80}
N
z
2 7
S 60f ' : . ]
2
[
[
§ a0k : : . i
s A R
20}
Y
0 i i i :
0 10 20 30 40 50 60
SNR [dB]
Fig. 3. Performance of the iterative IA algorithm for the 6 X 3 user
regular IFC.

It is observed that orthogonal schemes outperform ODA at
high signal to noise ratios in this specific structure. Although
the upperbound on the DoF for this network with 3 antennas at
each receiver node is 6, approaching the upperbound may
entail channel extensions. The slope of the INA sum rate at
hi%h signal to noise ratios suggests that 6 degrees of freedom
(d"=...=d""=1) can be achieved by using 4 antennas at the
receiver nodes without channel extension. For feasible IA,
leakage interference for each of three receivers should be zero.
It is realized that IA is feasible in case of RNS and INA. Note
that, the system of the bilinear equations is proper for both of
these cases N,=N,=16 for RNS scheme and N,=N,=24 for INA
scheme.

Iterative algorithm can also be used to check theoretical
feasibility of IA strategy for a given number of streams per
user. We evaluate the iterative algorithm for a 5x3 IFC with
requested message sets defined as S,={1,5}, S,={1,2} and
S3={3,4,5}. Solving the linear programming (6), ([)Ptimal DoF
assignment for this network is obtained as d T=d¥=0.4,
d¥=d"=d"=0.2. We have assumed 5 antennas at each
receiver node for the simulations. The system of bilinear
equations is proper in this case, N,=40, N,=36, hence, ODA is
likely to be feasible for this scenario. The average number of

received DoFs is ilnf /N =10/3. This measure provides us
j=
with an idea of whether the algorithms converge to a perfect [A
solution or not. Hence, if perfect alignment is achieved, i.e., the
interference is perfectly suppressed and the direct channels are
full-rank, the slope of the sum rate at high signal to noise ratios
should be close to 10/3. Figure 4 suggests that perfect 1A is
feasible. The slope of the sum rate is approximately 3 at high
signal to noise ratios. Evaluating leakage interference in
desired signal space confirms the fact that perfect 1A is feasible
in this scenario and there is no need for the RNS and INA

strategies in this network. In fact, RNS has less sum rate than
ODA in this case, which emphasizes the benefits of using
optimal DoF assignment.
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Fig. 4. Performance of the iterative IA algorithm for the 5 X 3 general

IFC.

VI. CONCLUSION

The concept of regular interference network is introduced
as an interference network in which all active transmitters have
equal number of optimal DoF. Regular IFCs are mostly
encountered in networks with few number of users. It is proved
that perfect IA cannot be achieved for the single antenna
regular IFCs with generic channel coefficients. The feasibility
of the optimal DoF assignment for the general interference
networks is not easily mathematically tractable. Distributed
minimum leakage TA is extended to work with general IFC.
This algorithm is based on the network reciprocity. Simulation
results suggest that, despite the non-symmetric nature of the
general IFC, iterative IA algorithm is still useful in practical
realization of A and evaluation of the perfect IA feasibility for
this network. Numerical comparisons to orthogonal schemes
and simultaneous isotropic transmission schemes show that the
benefits of using distributed IA algorithms are significant.
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