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Abstract—Globally, production systems must cope with 
limitations arising from variabilities and complexities due to 
globalization and technological advancements. To survive in spite 
of these challenges, critical process measures need to be closely 
monitored to ensure improved system performance. For 
production managers, the availability of accurate measurements 
which depict the status of production activities in real time is 
desired. This study is designed to develop an operational data 
decision support tool (ODATA-DST) using discrete event 
simulation approach. The work-in-process and processing time of 
each workstation/buffer station in a bottled water production 
system were investigated. The status of each job as they move 
through the system was used to simulate a routing matrix. The 
production output data for 50cl and 75cl product from 2014-2016 
were collected. A mathematical model for routing jobs from the 
point of arrival to the point of departure was developed using 
discrete event simulation. A graphical user interface (GUI) was 
designed based on the factory’s performance measurement 
algorithm. Simulating the factory’s work-in-process with respect 
to internal benchmarks yielded a cycle time of 4.4, 6.23, 5.04 and 
throughput of 0.645, 0.455, 0.637 for best case scenario, worst 
case scenario and practical worst case scenario respectively. The 
factory performed below the simulated benchmark at 26%, 28%, 
28% for the 50cl and at 51%, 54%, 59% for 75cl regarding the 
year 2014, 2015 and 2017 respectively. Performance 
measurement decision support tool has been developed to 
enhance the production manager’s decision making capability. 
The tool can improve production data analysis and performance 
predictions. 

Keywords-performance measures; production system; discrete 
event simulation;decision support system 

I. INTRODUCTION  

The need for continuous performance improvement in a 
production system despite the complexities arising from market 
fluctuations will continue to drive the desire for innovative 
research. Performance measurement, a sub-division of 
performance evaluation involves the selection of appropriate 
quantitative measures to aid decision making in a system. 
These measures are vital input into any decision support tools 
(DST) [1, 2]. Also, such measures are required to assist 

executives at different decision levels. Ultimately, these 
decisions will contribute to the actualization of the strategic 
goals of the organization [3-7]. Authors in [8] classified 
performance measures into: (1) measure focus, and (2) measure 
tense. The former comprises of financial (monetary) and 
operational (non-monetary) data, while measure tense entails 
studying the past to improve the present. Diverse studies have 
been carried out on how to measure system performance using 
DST [6, 9-11]. This is necessary as the profitability, 
productivity, and survivability of any production system largely 
depend on the quality of the decisions obtained from such 
tools. DST in a production system can be deployed at 
operational, tactical and strategic levels. However, due to the 
ambiguities associated with most decision processes, the need 
to smoothen the complexities associated with choosing the best 
alternative cannot be ignored [12]. 

Decision support tools relevant to the production system 
include the following: (1) thermodynamics and exergy analysis, 
(2) optimization, and (3) simulation [13-16]. On simulation, the 
aim is to imitate real-world process over time [17, 18]. Also, in 
a simulation model, discrete mathematics can be employed in 
which events of various kinds are kept and governed in a queue 
for each object [19]. Discrete event simulation (DES) considers 
state changes at discrete points (points which an event occurs). 
It can be used to answer “what if” scenarios, diagnose the 
occurrence of certain phenomena and enhance system 
development over time [12, 17, 20-22]. Despite the increase in 
the research work on using DES as a DST, empirical studies 
have shown that it is minimally used in production systems [1, 
12, 23-25]. In Nigeria, one of several challenges limiting the 
performance of small and medium scale enterprises (SMEs) 
involved in production process is the lack of access to 
proprietary DST [7, 26, 27]. Based on this reality, in this study 
the objective is to develop an operational data DST (ODATA-
DST) for a bottled water factory using DES analytical 
approach. The rest of this paper is structured as follows: A brief 
discussion on DST and DES is the focus of section II. In 
section III, ODATA-DST was developed using an illustrative 
example. Results from the example and conclusion are the 
focus of sections IV and V respectively. 
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ܶܥ =	 ௔ܶ௣௣௥௢௫     (1) 

Case 2: When the production line is saturated  ܶܥ = ݔܽ݉ ൜ ௔ܶ௣௣௥௢௫.	, ௐூ௉஼ೌ೛೛ೝ೚ೣ.ൠ   (2) 

 Machine Capacity ܥ௔௣௣௥௢௫. = ଵ஼்      (3) 

 Throughput ܶܪ = 	௔௣௣௥௢௫ܥ ∗ 	ܴܲ    (4) 

 Work-in-process (from Little’s Law) ܹܲܫ = 	ܪܶ	 ×  (5)     ܶܥ

 Bottleneck rate ݎ௕ = 	 ଵ்      (6) 

 Average time at a station  ଴ܹ = 	 ௕ݎ ଴ܶ      (7) 

TABLE II.  PLANT NAMING CONVENTION 

Conventions Name Description 
A1 Belt conveyor Belt conveyor 
A2 Buffer station 1 Buffer station 1 
A3 Workstation 1 Automatic rinsing machine 
A4 Buffer station 2 Buffer station 2 
A5 Workstation 2 Automatic filling machine 
A6 Buffer station 3 Buffer station 3 
A7 Workstation 3 Automatic capping machine 
A8 Buffer station 4 Buffer station 4 
A9 Workstation 4 Automatic Packaging machine 

A10 Warehouse Warehouse 

 

D. ODATA-DST Graphic User Interface 

The computer implementation of ODATA-DST was 
achieved using visual basic application (VBA) integrated 
development environment. The following motivated the use of 
VBA: (1) compatibility, (2) availability across multiple 
platforms, (3) interactive nature, and (4) ease of numerical 
programming. A screenshot of ODATA is shown in Figure 3.  

E. Best-Case Scenario, Worst-Case Scenario and Pratical 
Worst- Case Scenario of the Production Line 

Analyzing the production line based on the best-case 
scenario, worst-case scenario and practical worst-case scenario 
is essential. These parameters are required to measure 
performance, determine the possible behavior, and areas 
requiring improvement at any time period. 

1) Best-Case Performance (BCP) 

This can be classified into minimum cycle time and 
maximum throughput. Minimum cycle time for a given WIP 
level (w) is given by:  ܥ ௕ܶ௘௦௧ = ቊ ଴ܶ	݂݅	ݓ	 ≤ 	ܹ_0௪௥್ 	݁ݏ݅ݓݎℎ݁ݐ݋	     (8) 

Maximum throughput for a WIP level given by	ܶܪ௕௘௦௧:  	ܶܪ௕௘௦௧ = ቊ௪்బ 	ݓ	݂݅	 ≤ 	 ଴ܹݎ௕	ݐ݋ℎ݁݁ݏ݅ݓݎ    (9) 
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Fig. 2.  Flow chart of job routing. 

2) Worst-Case Performance (WCP) 

This involves the maximum cycle time and minimum 
throughput possible for a line with bottleneck rate ݎ௕ and raw 
process time ( ଴ܶ). Equation (10) is the worst-case cycle time 
for a given WIP level w. ܥ ௪ܶ௢௥௦௧ = ݓ ଴ܶ    (10) 

Equations (11)-(13) are the worst-case throughput for a 
given WIP level w.  ܶܪ௪௢௥௦௧ = 	 ଵ்బ     (11) ܶܥ = ܰ ቀ1 +	௪ିଵே ቁ 	= (12)    ݐ ଴ܶ +	௪ିଵ௥್      (13) 

Applying Little’s law, the corresponding throughput will 
be: ܶܪ =	ௐூ௉஼்      (14) =	ቀ ௪ௐబା௪ିଵቁ  ௕    (15)ݎ

3) Practical Worst-Case (PWC) 

Equation (16) is the cycle time for a PWC.  ܥ ௉ܶௐ஼ = ଴ܶ + ௪ିଵ௥್     (16) 
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