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Abstract—Modeling of exponential growth or decay is a nonlinear 
regression technique. In the real world, the exponential growth is 
often used to model population growth while the exponential 
decay is often used to a model declining population or a 
decreasing size. In this study, we try to improve the performance 
of exponential growth by adding bootstrap and fuzzy techniques. 
This gives us the option to perform analysis even when there is 
not enough data. The aim of the current work is to develop a new 
dimension of an applied exponential analysis with improved 
results. The suggested method was tested and applied to 
biological data. The gathered data was compared by measuring 
the average width of the predicted interval using least squares 
method and fuzzy method. The result shows that the average 
width of the predicted interval using least squares method was 
0.522 while using fuzzy method was 0.082. This indicated the 
superiority of the fuzzy regression methodology. Besides that, this 
paper provides the algorithm for the prediction of cell growth 
and inferences. 

Keywords-bootstrap; exponential growth; fuzzy regression; 
exponent decay; nonlinear regression  

I. INTRODUCTION  

The exponential function is one of the most important and 
widely occurring functions in physics and biology [1]. The 
exponential distribution has many applications in biology. 
Examples of the exponential application include the bacteria 
growth time and the decay time of bacterial pathogens with 
constant failure rates. Exponent distribution of an event is the 
probability of the event occurring in the next small time 
interval which does not vary through time, and time between 
events has a Poisson distribution. The exponential growth or 
decay follows a function N which changes with time in such a 
way that the change ΔN in N during a short time interval Δt is 
proportional to N and to Δt, as ΔN=kΔt, rearranging this 
equation, we obtain: 

N
k N

t





     (1) 

Therefore, the constant of proportionality k can be seen by 
rearranging equation (1). Then, we obtain k=(ΔN/N)/Δt. The 
constant k is then the fractional change (ΔN/N) in N per unit 

time Δt. The dimension of k is (time) 1 [2]. 

II. STATISTICAL THEORY AND METHODOLOGY 

The linear regression model is a powerful method for 
modeling and forecasting, especially in conventional regression 
analysis. For modeling purposes, data should be crisp and 
should follow a normal assumption, this will lead to better 
significant results [3]. In the current study, an exponential 
model was applied after transforming the data to a linear model 
with mathematical programming by assuming that the 
dependent variables were crisp while the independent variable 
was a symmetric fuzzy number. This paper provides an 
algorithm for the exponential growth model using cell cultured 
dataset. The basic analysis is to transform the nonlinear 
equation into a linear form. After transforming into linear 
regression, we will obtain an equation in the form of 
Y=β0+β1x1+ε. We transformed the nonlinear equation in order 
to get better results and better significant inferences. The 
random error term is added to make the model probabilistic 
rather than deterministic. The value of the coefficient βι 
determines the contribution of the independent variables and β0 
is the y-intercept [3, 4]. To be more accurate, a fuzzy regression 
can be rearranged as  

110 xZZY      (2) 

where the explanatory variables xi are assumed to be precise. 
However, according to (2), response variable Y is not crisp but 
is instead fuzzy in nature. For the fuzzy approach, Zi are 



Engineering, Technology & Applied Science Research Vol. 8, No. 4, 2018, 3130-3134 3131  
  

www.etasr.com Ahmad et al.: Developing A New Dimension of an Applied Exponential Model: Application… 
 

assumed symmetric fuzzy numbers which can be presented by 
the interval.

 
Zi can be expressed as a fuzzy set given by 

 1w1c1 a,aZ  where ica  is the center and iwa is radius or 

associated vagueness. This reflects the confidence in the 

regression coefficients around ica  in terms of symmetric 

triangular membership function. So, the relationship is also 
considered to be fuzzy. This  w1c1i a,aZ  can be written 

as  R1L11 a,aZ  with w1c1L1 aaa  and w1c1R1 aaa  . 
In fuzzy regression methodology, parameters are estimated by 
minimizing total vagueness in the model. Using 

 1w1c1 a,aZ , we can write the fuzzy regression as  

 0w0c a,ay xa,a 1w1c     (3) 
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Fig. 1.  Flowchart of the integrated exponential calculation. 

Thus this can be written as 1j1c0cjc xaay  then it can be 

written straightly as jw 0w 1w 1jy a a x  . As jwy
 
represents 

radius and so cannot be negative, therefore on the right-hand 
side of the equation 1j1w0wjw xaay  , absolute values of 

ijx are taken. Suppose there are m data points, each comprising 

of   row1na  vector. The parameters Zi 
are estimated by 

minimizing the quantity, which is the total vagueness of the 
model-data set combination, subject to the constraint that each 
data point must fall within the estimated value of response 
variable. This can be visualized as the following linear 

programming problem, minimized  
m

0w 1w 1j
j 1

a a x


 and subject 

to:     0c 1c 1j 0w 1w 1j ja a x a a x Y     

    0c 1c 1j 0w 1w 1j ja a x a a x Y     

and 0aiw  . A simple procedure is commonly used to solve 
the linear programming problem [5]. The present data is a 
sample of the results obtained from [6] which characterize the 
proliferative capacity of mesenchymal stem cells. The data are 
composed of two variables which are the days of culture (X) 
and population doubling level (Y) – see Table I.  

TABLE I. X AND Y DESCRIPTION 

Variable Description 
X A total number of time (days) between each cell passage. 

Y 
Population doubling level is the proportion of cells count at 
80% confluency over the original number of cells seeded. 

 

A. Exponential Growth Transforming to Linear Form 

Exponential growth formula and exponential decay formula 
are given by bXY Ae . The procedure to transform the growth 
and decay formula into a linear form follows. The equation for 
the linear form for exponential growth is given by (4): 

 

ln ln( ) ln( ) ln( ) ln(A)bX bXY Ae A e bx      (4) 

B. Calculations of an Exponential Cell Growth using SAS 
Algorithm 

 First step: Data for exponential cell growth should enter in 
SAS algorithm as follows. 

Data Cell_Growth;  
input x y lny;  
datalines;  
0.00 38.00 3.64  
5.00 39.31 3.67  
8.00 39.74 3.68 
10.00 40.98 3.71 
13.00 43.10 3.76 
17.00 45.78 3.82 
20.00 59.15 3.89 
22.00 49.90 3.91 
24.00 53.98 3.99 
28.00 57.46 4.05 
31.00 61.03 4.11 
34.00 63.80 4.16 
37.00 65.52 4.18 
40.00 68.54 4.23 
44.00 72.62 4.29 
47.00 75.42 4.32 
50.00 79.38 4.37 
53.00 83.31 4.42 
;  
run;  

 Second step: Adding bootstrapping to the calculation. The 
following algorithm calculates the data using a bootstrap 
method and prints out the data.  

%MACRO bootstrap(data=_last_, booted=booted, boots=2,  
seed=1234);  
DATA &booted;  
pickobs = INT(RANUNI(&seed)*n)+1;  
SET &data POINT = pickobs NOBS = n;  
REPLICATE=int(i/n)+1;  
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proc nlp;  
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