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Abstract—Modeling of exponential growth or decay is a nonlinear
regression technique. In the real world, the exponential growth is
often used to model population growth while the exponential
decay is often used to a model declining population or a
decreasing size. In this study, we try to improve the performance
of exponential growth by adding bootstrap and fuzzy techniques.
This gives us the option to perform analysis even when there is
not enough data. The aim of the current work is to develop a new
dimension of an applied exponential analysis with improved
results. The suggested method was tested and applied to
biological data. The gathered data was compared by measuring
the average width of the predicted interval using least squares
method and fuzzy method. The result shows that the average
width of the predicted interval using least squares method was
0.522 while using fuzzy method was 0.082. This indicated the
superiority of the fuzzy regression methodology. Besides that, this
paper provides the algorithm for the prediction of cell growth
and inferences.
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1. INTRODUCTION

The exponential function is one of the most important and
widely occurring functions in physics and biology [1]. The
exponential distribution has many applications in biology.
Examples of the exponential application include the bacteria
growth time and the decay time of bacterial pathogens with
constant failure rates. Exponent distribution of an event is the
probability of the event occurring in the next small time
interval which does not vary through time, and time between
events has a Poisson distribution. The exponential growth or
decay follows a function N which changes with time in such a
way that the change 4N in N during a short time interval 4z is
proportional to N and to At, as AN=kAt, rearranging this
equation, we obtain:
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Therefore, the constant of proportionality & can be seen by

rearranging equation (1). Then, we obtain k=(AN/N)/At. The

constant k is then the fractional change (AN/N) in N per unit

time A¢. The dimension of k is (time) -l [2].

II.  STATISTICAL THEORY AND METHODOLOGY

The linear regression model is a powerful method for
modeling and forecasting, especially in conventional regression
analysis. For modeling purposes, data should be crisp and
should follow a normal assumption, this will lead to better
significant results [3]. In the current study, an exponential
model was applied after transforming the data to a linear model
with mathematical programming by assuming that the
dependent variables were crisp while the independent variable
was a symmetric fuzzy number. This paper provides an
algorithm for the exponential growth model using cell cultured
dataset. The basic analysis is to transform the nonlinear
equation into a linear form. After transforming into linear
regression, we will obtain an equation in the form of
Y=py+px;+e. We transformed the nonlinear equation in order
to get better results and better significant inferences. The
random error term is added to make the model probabilistic
rather than deterministic. The value of the coefficient S,
determines the contribution of the independent variables and £,
is the y-intercept [3, 4]. To be more accurate, a fuzzy regression
can be rearranged as

Y=2Z,+Zx )

where the explanatory variables x; are assumed to be precise.
However, according to (2), response variable Y is not crisp but
is instead fuzzy in nature. For the fuzzy approach, Z; are
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assumed symmetric fuzzy numbers which can be presented by
the interval. Z; can be expressed as a fuzzy set given by

Z,=<a,,,a,, > whereq,, is the center and a,, is radius or
associated vagueness. This reflects the confidence in the
regression coefficients around @, in terms of symmetric
triangular membership function. So, the relationship is also
considered to be fuzzy. This Z;, =< a, ,a, > can be written
as Z, = [alL,alR]with a, =a,, —a,and a =a,, —a,, .
In fuzzy regression methodology, parameters are estimated by

minimizing total vagueness in the model. Using
Z,=<a,,,a,, >, we can write the fuzzy regression as
y=<ay.,ap, >+ <aj..dp, >x (3)
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Thus this can be written as y ;. = a,, + a,,x,; then it can be

written straightly as Viw =0, ta,, x1j" As v, represents

radius and so cannot be negative, therefore on the right-hand
side of the equation Vi =g+, , absolute values of

X
X, are taken. Suppose there are m data points, each comprising

of a(n+1)—r0w vector. The parameters Z; are estimated by

minimizing the quantity, which is the total vagueness of the
model-data set combination, subject to the constraint that each
data point must fall within the estimated value of response
variable. This can be visualized as the following linear

m
programming problem, minimized Z(%W +a, x]j‘) and subject
j=1
to: {(aac +a,.x, ) + (a()w +a,x, )} 27,

{(%c + a;c Xy ) - (a()w + anXy; )} < Yj

and a;,, =20. A simple procedure is commonly used to solve

the linear programming problem [5]. The present data is a
sample of the results obtained from [6] which characterize the
proliferative capacity of mesenchymal stem cells. The data are
composed of two variables which are the days of culture (X)
and population doubling level (Y) — see Table I.

TABLE 1. X AND Y DESCRIPTION
Variable Description
X A total number of time (days) between each cell passage.
v Population doubling level is the proportion of cells count at
80% confluency over the original number of cells seeded.

A. Exponential Growth Transforming to Linear Form

Exponential growth formula and exponential decay formula
are given by Y = Ae”* . The procedure to transform the growth
and decay formula into a linear form follows. The equation for
the linear form for exponential growth is given by (4):

Y = n(4e?X) = 1n(4) +n(?X ) = In(A) + bx o
B. Calculations of an Exponential Cell Growth using SAS

Algorithm

e First step: Data for exponential cell growth should enter in
SAS algorithm as follows.

Data Cell_Growth;
input X y Iny;

datalines;

0.00 38.00 3.64
5.00 39.31 3.67
8.00 39.74 3.68
10.00 40.98 3.71
13.00 43.10 3.76
17.00 45.78 3.82
20.00 59.15 3.89
22.00 49.90 391
24.00 53.98 3.99
28.00 57.46 4.05
31.00 61.03 4.11
34.00 63.80 4.16
37.00 65.52 4.18
40.00 68.54 423
44.00 72.62 4.29
47.00 75.42 432
50.00 79.38 4.37
53.00 83.31 442
run;

e Second step: Adding bootstrapping to the calculation. The
following algorithm calculates the data using a bootstrap
method and prints out the data.

%MACRO bootstrap(data=_last_, booted=booted, boots=2,
seed=1234);

DATA &booted;

pickobs = INT(RANUNI(&seed)*n)+1;

SET &data POINT = pickobs NOBS = n;
REPLICATE=int(i/n)+1;
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A In y = (3.58278+0.2566) +(0.0160 + 0.000219) x
IF i > n*&boots THEN STOP;

RUN; Iny = (3.83938) +(0.016219) x @
%MEND bootstrap;

ods rtf file="abc.rtf' style=journal; and the lower limits of prediction interval for the exponential
%bootstrap(data= Cell_Growth, boots=2); model are computed using (8):

run;
proe print data=booted: In y =(3.58278-0.2566) +(0.0160 — 0.000219) x

run; Iny=(3.32618)+(0.015781) x

o Third step: estimating the parameters of an exponential
equation. The algorithm below is used to estimate
parameters according to the data.

®)

Fit Plot for y

Title “Exponential Equation”; 7

ods graphics / imagename = “Exponential Equation”;
proc nlin data=booted plots=fit;

parameters A=1 b=-1;

model y = A*exp(b*x);

ods output EstSummary=summExp;

run;

704

Observatirs 36]

MSE 12754
Raw Variance 1.2754]
Proj Variance 1.3134]

50 4

e Fourth step: Estimating the linear form of regression 401
according to the transform bootstrap data.

o 10 2 » w0 50
Proc reg data=booted,; x
model 1ny=x’ [ Fit_0 95% Confidence Limits_O 95% Predidtion Limits |
b
run; Fig. 2. The plot of an exponential
ods rtf
close;

. . . Fit Diagnostics for Iny
C. Parameter Estimation for Exponential Cell Growth oo {3 I | 0

004 o ° °

The SAS output for the parameter estimation follows. The
summary of the output follows.

002 - °

000+

Residual
o

RStudent
o

RStudent
o

o
TABLE II. PARAMETER ESTIMATE OF AN EXPONENTIAL EQUATION 0oy’ 2] 2

A 3'8 3‘3 4'0 4‘2 4‘4 3'6 3.'8 4'0 4'2 4'4 00'3 00'75 D,1'25

Approx | Approximate 95% Confidence Predicted Value Predicted Value Lewerage
Std Error Limits 008 oo s a4 5 020
A 35.9723 0.2566 35.4509 36.4937 004 P o

b 0.0160 | 0.000219 | 0.0155 0.0164 oz s ] s

Parameter | Estimate

0.10

Iny

0004
0m - ®

The obtained equation is given by (5): - s o 00s

004 -

a0 o

Residual
Cook's D

0.016 X 006 30 000
Y =3597e™ (5) 2 1 0 1 2 38 38 40 42 44 o 0 @™ @

Quantile Predicted Value Obsenation

Fit-Mean  Residual

Exponential growth formula is given by ¥ = Ae™ . After
parameter estimation, we obtain (6). Using the equation of
exponential growth equation we can estimate the growth of cell

04+

024 Par ameters 2
34

10 0 | e’ ;: " 0007
at the certain point ¥ =35.97¢%'%" | Taking a logarithm, we 02 uF Nan e aers

AdjR- Square 09673
. — T T — T T
obtain -0.075 003 0015 006 000408 000408
Residual Proportion Less

s
B

s Observators 36

-

Percent

_ 0016XY _ 0.016X y _.
In y=0n(35.9735¢"""") =In(35.9735) +In(e""*" )=> Fig.3.  Fit diagnostic for Iny.

In y =3.58278+0.0160x D. Calculation of Fuzzy Least Squares(FLS) For Exponential

So the parameter estimation and standard error are given as Growth
The algorithm below calculates the fuzzy least squares
Iny =3.58278 +0.0160x (FLS) for exponential growth. The full set of calculations can
(6) be visualized by the following programming. Table III

Std Error = (0'25 66)(0'000219) summarizes the optimization results for the parameter
The upper limits of prediction interval for the exponential estimates.

model are computed using (7): ods rtf file="abe.rtf style=journal:
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proc nlp;

min Y;

decvar aOc aOw alc alw;

bounds aOw>=0, al w>=0;

lincon a0c+13*alc-a0w-13*alw<=3.76;
lincon a0c+5*alc-a0w-5*alw<=3.67,
lincon a0c+20*alc-a0w-20*alw<=3.89;
lincon aOc+5*alc-a0w-5*alw<=3.67;
lincon a0c+13*alc-a0w-13*alw<=3.76;
lincon a0c+5*alc-a0w-5*alw<=3.67,
lincon aOc+0*alc-a0w-0*alw<=3.64;
lincon aOct+5*alc-a0w-5*alw<=3.67,
lincon a0c+24*alc-a0w-24*alw<=3.99;
lincon a0c+8*alc-a0w-8*alw<=3.68;
lincon aOc+0*alc-a0w-0*alw<=3.64;
lincon aOc+24*alc-a0w-24*alw<=3.99;
lincon a0c+5*alc-a0w-5*alw<=3.67,
lincon a0c+50*alc-a0w-50*alw<=4.37;
lincon a0c+53*alc-a0w-53*alw<=4.42;
lincon aOct+40*alc-a0w-40*alw<=4.23;
lincon a0c+22*alc-a0w-22*alw<=3.91;
lincon a0c+20*alc-a0w-20*alw<=3.89;
lincon a0c+17*alc-a0w-17*alw<=3.82;
lincon a0c+28*alc-a0w-28*alw<=4.05;
lincon a0c+17*alc-a0w-17*alw<=3.82;
lincon a0c+20*alc-a0w-20*alw<=3.89;
lincon aOc+13*alc-a0w-13*alw<=3.76;
lincon a0c+22*alc-a0w-22*alw<=3.91;
lincon a0c+8*alc-a0w-8*alw<=3.68;
lincon a0c+37*alc-a0w-37*alw<=4.18;
lincon aOct+0*alc-a0w-0*alw<=3.64;
lincon a0c+28*alc-a0w-28*alw<=4.05;
lincon a0c+50*alc-a0w-50*alw<=4.37;
lincon a0c+13*alc-a0w-13*alw<=3.76;
lincon aOc+44*alc-a0w-44*alw<=4.29;
lincon a0c+8*alc-a0w-8*alw<=3.68;
lincon a0c+8*alc-a0w-8*alw<=3.68;
lincon aOc+28*alc-a0w-28*alw<=4.05;
lincon a0c+34*alc-a0w-34*alw<=4.16;
lincon aOc+40*alc-a0w-40*alw<=4.23;
lincon aOc+13*alct+aOw+13*alw>=3.76;
lincon a0ct+5*alctaOw+5*alw>=3.67;
lincon a0c+20*alc+aOw+20*alw>=3.89;
lincon aOc+5*alctaOw+5*alw>=3.67;
lincon aOc+13*alct+aOw+13*alw>=3.76;
lincon a0ct+5*alctaOw+5*alw>=3.67;
lincon aOc+0*alctaOw+0*alw>=3.64;
lincon aOc+5*alctaOw+5*alw>=3.67;
lincon aOct+24*alct+a0w+24*alw>=3.99;
lincon aOc+8*alcta0w+8*alw>=3.68;
lincon aOc+0*alctaOw+0*alw>=3.64;
lincon aOc+24*alc+aOw+24*alw>=3.99;
lincon a0ct+5*alctaOw+5*alw>=3.67;
lincon a0c+50*alct+aOw+50*alw>=4.37,
lincon a0c+53*alct+aOw+53*alw>=4.42;
lincon aOct+40*alct+a0w+40*alw>=4.23;
lincon aOc+22*alct+a0w+22*alw>=3.91;
lincon a0c+20*alc+aOw+20*alw>=3.89;
lincon a0c+17*alct+aOw+17*alw>=3.82;
lincon a0c+28*alct+a0w+28*alw>=4.05;

lincon aOc+17*alctaOw+17*alw>=3.82;
lincon a0c+20*alc+a0w+20*alw>=3.89;
lincon aOc+13*alct+aOw+13*alw>=3.76;
lincon a0c+22*alct+a0w+22*alw>=3.91;
lincon aOc+8*alcta0w+8*alw>=3.68;
lincon aOc+37*alct+aOw+37*alw>=4.18;
lincon a0c+0*alc+aO0w+0*alw>=3.64;
lincon a0c+28*alct+a0w+28*alw>=4.05;
lincon aOc+50*alctaOw+50*alw>=4.37;
lincon aOc+13*alct+aOw+13*alw>=3.76;
lincon aOc+44*alct+aOw+44*alw>=4.29;
lincon aOc+8*alcta0w+8*alw>=3.68;
lincon aOc+8*alc+a0w+8*alw>=3.68;
lincon a0c+28*alc+aOw+28*alw>=4.05;
lincon a0ct+34*alct+a0w+34*alw>=4.16;
lincon aOc+40*alctaOw+40*alw>=4.23;
Y=a0w*36+727*alw;

run;

ods rtf close;

Fit Plot for Iny

Observatons 36
Parameters 2
Eor DF 34
MSE 0.0007
RSquare 09877
Adj - Square 0.9873

Iny

0 10 20 30 40 50
X

Fit [0 95% Confidence Limits - - - - - 95% Prediction Limits

Fig. 4. Plot Iny vs x

E. Parameter Estimation for Fuzzy Least Square Exponential
Cell Growth
Parameter  estimates are  given:  a0c=3.598824,
a0w=0.041176, alc=0.015294 and alw=0.000000. The fuzzy
upper prediction limit for exponential model is computed using
the equation as follows:

In y =(3.598824+0.041176)
+(0.015294 +0.000000) x )
In y =3.64000+0.015294x

and the lower limit of prediction interval for the exponential
model is computed using the equation:

Iny =(3.598824-0.041176)
+(0.015294—-0.000000) x (10)

Iny =3.557648+0.015294x

Table IV shows that fuzzy regression methodology is
capable of handling situations in which predictor variables are
highly correlated. From this Table, the average width for LS
was found to be 0.522, while the one for FR was only 0.082,
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indicating thereby the superiority of fuzzy regression
methodology.
Residuals for Iny
o004
= o002 ¢ °
0024 °
Fig. 5. Residual for Iny
TABLE III. OPTIMIZATION RESULTS
. Gradient Objective Active Bound
Parameter | Estimate . .
Function Constraint
alc 3.598824 0
a0w 0.041176 36.000000
alc 0.015294 0 Lower BC
alw 0.000000 727.000000
Value of objective function=1.4823529412
TABLE1V. AVERAGE WIDTH FOR FITTED REGRESSION MODELS

Method of Least Squares (LS) Method of Fuzzy Regression (FR)
36, 36

(LP),-(UP), | S(widmh) /36 | (LP),-(UP), S (widh), /36

i=1,2,.,36 | sy i=1,2,..,36 oo

LP: Lower of width prediction, UP Upper of width prediction

III. SUMMARY AND DISCUSSION

This paper gives an explanation for the alternative
programming method of bootstrap approach to exponential
growth cell modeling nonlinear regression procedure using
SAS software. The aim of the algorithm is to provide the
researcher with an alternative programming of data analysis
with good accuracy prediction result. Fuzzy model and crisp
data developed a better accuracy model compared to the
conventional one. The difference on the result can be seen in
Table IV. In [1], authors discussed Zadeh's extension principle
to classical crisp estimated to the least squares method. They
found that modified linear estimates often lead to better
performance of an estimated model. They concluded that fuzzy
linear regression model had better performance compared to
LS method.
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