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Abstract—Time-frequency fault detection techniques were 
applied in this study, for monitoring real life industrial bearing. 
For this aim, an experimental test bench was developed to 
emulate the bearing rotating motion and to measure the induced 
vibration signals. Dedicated software was used to analyze the 
acquired measurements in the time-frequency domain using 
several distributions with varying resolution. Results showed that 
each fault type exhibits a specific behavior in the time-frequency 
domain, which is exploited in the localization of the faulty 
component. 
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I. INTRODUCTION  

Enhancement of the production system dependability is a 
major issue faced by competitive industrial companies. In this 
context, the predictive maintenance can play a fundamental 
role in improving the production system reliability and 
economic efficiency. In fact, the predictive maintenance is a 
corrective action applied on the equipment, systems or 
installations based on the previous knowledge of the operation 
conditions or performances. Hence, using fault monitoring 
algorithms can provide real time information about the system 
health and allows a reliable maintenance decision-making tool 
[1]. In rotating machinery, the fault monitoring of the rolling 
element bearings (REBs) is of great practical interest. Actually, 
bearing damage causes 40% of the total amount of failures in 
an induction motor [2]. A comprehensive review of the recent 
advances of REBs monitoring techniques can be found in [3]. 
Current signature analysis method for the diagnosis of bearing 
faults forms an area of increasing scientific interest. The main 
idea beyond this technique is detecting faults based on the 
change of the stator current spectrum of the induction motor. 
This change causes a variation of the load and irregularities in 
the magnetic field. The latter affects the mutual and self-
inductance and leads to side bands across the line frequency. 

Despite the advantages of the current signature method, 
mechanical vibration signal analysis remains more immediate, 
simple and rich source of information for understanding the 
defected bearings (DBs) behavior [4]. Vibration signals 
acquired from bearings can be either stationary or non-
stationary. The stationary signals are characterized by time-

invariant statistical properties (moments, densities etc.), 
however, the statistical properties of a non-stationary signal 
variy over time [5, 6]. In fact, bearing vibration signals are 
almost always non-stationary since they are inherently dynamic 
(e.g. speed and load condition change over time) [7]. Joint 
time-frequency analysis is an effective approach for addressing 
this issue, using signals which are presented in a time-
frequency amplitude/energy density 3D space. Hence, both the 
constituent frequency components and their time variation 
properties can be detected [8-10]. Several time-frequency 
analysis methods are developed, e.g. short time Fourier 
transform [11], wavelet transform [12, 13], bilinear/quadratic 
time-frequency distributions including Cohen and affine classes 
distributions based on Wigner-Ville distribution [14-16]. In the 
same context, adaptive optimal kernel methods allow adaptive 
kernel modification and make the time-frequency distribution 
suitable for signal structures identification [17]. To suppress 
the cross-terms and improve time-frequency resolution, the 
reassignment method has been proposed in [18]. In order to 
deal with the non-linearity and non-Gaussianity of signals, 
time-varying higher order spectrum methods such as Wigner 
higher order spectrum were developed [19]. It is worth 
mentioning that most of the above mentioned time-frequency 
analysis methods have been applied to machinery fault 
diagnosis [20, 21]. In this paper, time-frequency vibration 
analysis method is used for fault detection of real world 
industrial bearings motivated by the promising results in 
induction motor condition monitoring field [22, 23]. For this 
aim, a bearing experimental test bench has been developed and 
the acquired vibration signals were examined using T-F 
ANALYSIS toolbox. The used approach consists of comparing 
several time-frequency bearing performances under different 
operation conditions. 

II. NON-DESTRUCTIVE BEARING TESTING BASED ON TIME-
FREQUENCY ANALYSIS 

Vibration analysis is one of the most usual non-destructive 
methods utilized to evaluate the bearing conditions in an 
operating machine. Different bearing faults induce different 
patterns in the time-frequency plane. In this section we give the 
frequency values associated to each type of bearing element 
defect (cage, ball, inner and outer raceways). Thereafter, in 
order to overcome the drawbacks of the traditional spectral 
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