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Abstract-This paper supplies a calculation method for the
parameter estimates of an exponential equation through SAS
algorithm. The aim of this paper is to investigate the efficiency of
the gained parameter estimates through the forecasting
performance. The proposed calculation method can provide a
very useful technique to develop an exponential equation with
better accuracy performance. This research paper illustrates a
sample of the data obtained from the established study, which
characterize the proliferative capacity of mesenchymal stem cells.
This paper also provides the specific algorithm for the parameter
estimates.
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1. INTRODUCTION

Regression analysis is a statistical methodology that uses
the relationship between two or more quantitative variables in a
way that one variable can be predicted from the other, or
others. This methodology is widely used in business, social,
behavioral and biological sciences, including agriculture and
fishery research [1]. For example, fish weight at harvest can be
predicted by utilizing the relationship between fish weights and
other growth affecting factors like water temperature, dissolved
oxygen, and free carbon dioxide. There are other situations in a
fishery where relationships among variables can be exploited
through regression analysis [1]. Regression analysis serves
three major purposes: (1) description, (2) control and (3)
prediction. We frequently use equations to summarize or
describe data. Regression analysis is helpful in developing such
equations. For example, we may collect a considerable amount
of fish growth data and a data on a number of biotic and abiotic
factors and a regression model would probably be a much more
convenient and useful summary of those data than a table or a
graph. Besides prediction, regression models may be used for
control purposes. A cause and effect relationship may not be
necessary if the equation is to be used only for prediction [2]. A
functional relationship between two variables is expressed by a
mathematical formula. If x denotes the independent variable
and y the dependent variables, a functional relationship is of

the form y = f (x)

Given a particular value of x, the function indicates the
corresponding value of y. A statistical relation, unlike a
function, is not a perfect one. In general, the observations for a
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statistical relation do not fall directly on the relationship’s
curve. Depending on the nature of the relationship between x
and y, regression approach may be classified into two
categories, linear regression and nonlinear regression models.
The models that are linear in these parameters are known as
linear models, whereas in nonlinear models parameters show
nonlinearity. Linear models are generally satisfactory
approximations for most regression applications. There are
occasions, however, when an empirically indicated or a
theoretically justified nonlinear model is more appropriate [3].

A. Linear Regression

Linear regression is used to study the linear relationship
between a dependent variable Y and one or more independent
variables X. The dependent variable Y must be continuous,
while the independent variables may be either continuous,
binary, or categorical. The initial judgment of a possible
relationship between two continuous variables should always
be made on the basis of a scatter plot (scatter graph). This type
of plot will show whether the relationship is linear or nonlinear.
Performing a linear regression makes sense only if the
relationship is linear. Other methods must be employed to
study nonlinear relationships [4]. A model with more than
predictor variables is a straightforward one. The model can be
stated as follows:

Vi =By +Bix; +e (D

where y; is the value of the response variable in the " trial, £,

and f; are parameters x; is a known constant, namely the ith
value of the predictor variable and ¢; is a random error term
with mean zero and variance o” and their covariance is zero [5].

B. History of the Exponential Function

The exponential is one of the most significant and widely
occurring functions. In biology, it may depict the growth of
bacteria or animal populations, the reduction of the number of
bacteria in response to a sterilization process, the development
of a tumor or the absorption or elimination of a drug.
Exponential growth cannot go on forever because of limitations
of nutrients, etc. Knowledge of the exponential function makes
it more comfortable to understand birth and death rates, even
when they are not perpetual. In physics, the exponential
function describes the disintegration of radioactive nuclei, the
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emission of light by atoms, the assimilation of light as it passes
through matter, the change of voltage or current in some
electrical circuits, the variance of temperature with time as a
warm object cools, and the rate of some chemical reactions [1].
Although the exponential distribution provides a simple,
elegant and closed form solution to many problems, it does not
offer a reasonable parametric fit for some practical applications
where the underlying failure rates are nonconstant, presenting
monotone shapes. Recently, in the procedure of overcoming
such problems, new categories of examples were introduced
based on adjustments of the exponential distribution. Authors
in [6] offered a generalized exponential distribution, which can
hold data with increasing and decreasing failure rate function.
Authors in [7] ushered in the exponential geometric distribution
with decreasing failure rate, authors in [8] proposed a two-
parameter distribution known as exponential-Poisson
distribution, which takes in a decreasing failure rate and
authors in [3] proposed another modification of the exponential
distribution with decreasing failure rate function This model is
inferred in a complementary risk scenario [9] where the
lifetime associated with particular danger is not evident, rather
we observe just the maximum lifetime value among all risks .

C. Exponential Growth

Exponential growth is often used to model the growth of
organism populations in a resource-rich environment. Here
“resource-rich” means that there is abudance of food and other
resources necessary for the population to grow. For example,
the initial growth of a cell bacteria in a mouth is often modeled
as exponential. The justification for this model is that the rate at
which a population of organisms grows should be proportional
to their number, assuming that the organisms reproduce at a
constant rate. For example, if you double the size of a
population, then this should precisely double the rate at which
the population bears an offspring, and should, therefore, double
the rate at which the size of the population increases. What this
means is that the population A of a given organism in a
resource-rich environment should satisfy the differential
equation

dA

dx
where x is some constant that depends on the rate of
reproduction. Thus the population grows exponentially

Ax,

A= Aye™

This model predicts that the population 4 will grow
indefinitely, which cannot be true in any real situation.
Eventually, any population will run out of resources such as
food or space to grow. However, the exponential model often
gives fairly accurate results in cases where the short-term
growth of a population is not inhibited by limited
resources|10].

D. Interpreting R’

R’ is frequently defined as the proportion of variance of the
response that is predictable (or explained) from the regressor
variables, that is the variability explained by the model. A low
value of R’ can suggest that the assumptions of linear

regression are not satisfied. Plots and diagnostics will
substantiate this suspicion.

II.  MATERIALS AND METHODS

We used the data which characterize the proliferative
capacity of mesenchymal stem cells. The data are composed of
two variables which are the days of the culture (X) and
population doubling level (InY). First, we bootstrap the data in
order to increase the sample size and also to optimize the
parameter estimates. Then, we estimate the parameters through
the exponential curve fitting and transform the nonlinear model
into a linear form. This would bring a linear equation form.
From the equation, we estimate the value of the independent
variable (x) and fit the data with robust weighted regression by
Cauchy, robust Fair weighted regression and robust weighted
regression by Huber. Then a covariate-dependent variable is
used to examine the differences in performance of the model
suitability.

A. The Algorithm of Exponential Calculation

The algorithm showed below is the way of inserting data in
SAS algorithm and the way of calculating the bootstrapping
method.

e Data in SAS format. The name of the dataset is given as
cell growth. The data consist of two variables x and In y

Data cell growth;
input X y Iny;
cards;

0.00 38.00 3.64
5.00 3931 3.67
8.00 39.74 3.68
10.00 4098 3.71
13.00 43.10 3.76
17.00 45.78 3.82
20.00 49.15 3.89
22.00 4990 391
24.00 5398 3.99
28.00 57.46 4.05
31.00 61.03 4.11
34.00 63.80 4.16
37.00 65.52 4.18
40.00 68.54 4.23
44.00 72.62 4.29
47.00 7542 432
50.00 79.38 4.37
53.00 83.31 4.42

run;

e Adding bootstrapping algorithm to the methodology
building. cell growth data were bootstrapped two times
with resampling. The following procedure was given in
SAS syntax as follows. The new data which are generated
by the SAS procedure will be named as booted. The
produce data in the study will be print through the print
procedure.

e We also add the syntax of ‘ods rtf file="abc.rtf
style=journal’ in the SAS language in order to get the
output in Microsoft Word format.

%MACRO bootstrap(data=_last_, booted=booted, boots=2,
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seed=1234);

DATA &booted;

pickobs = INT(RANUNI(&seed)*n)+1;
ET &data POINT = pickobs NOBS =n;
REPLICATE=int(i/n)+1;

i+l

IF i> n*&boots THEN STOP;

RUN;

%MEND bootstrap;

ods rtf file="abc.rtf' style=journal;
%bootstrap(data= cell _growth, boots=2);
run;

proc print data=booted;

run;

PROC SQL is a procedure developed in SQL. We can use
this procedure to adjust, retrieve and report data in tables
and views. SAS will create the output in the form of tables.

The syntax below shows the calculation of the corrected
sum of squares and the exponential parameter estimates.
Through the syntax provided, we are able to measure the
fitness of the parameter through the R-Square and AIC
value.

Title “CORRECTED SUM OF SQUARES”;

proc sql;

select css(y) into :CORRECTED_SUM_OF SQUARESy from
cell_growth;

quit;

Title “EXPONENTIAL PARAMETER ESTIMATES”;
ods graphics/imagename="ExponentialFit”;

proc nlin data= booted plots=fit;

parameters A=1 b=0;

model y = A * exp(b*x);

ods output EstSummary=summExp;

run;

proc sql;
select N.nValuel as n,

SSE.nValuel as SSE,
1 - SSE/&CORRECTED_SUM_OF SQUARESy as RSquare,
n * log(SSE/n) + 2*2 as AIC from summExp as SSE,
summExp as N

where N.Label1="“Observations Used” and
SSE.Label1="“Objective”;
quit;

The Syntax of Regression Modeling Based on Four Types
of Calculation

Calculation regression based on robust regression. The full
syntax is given as follows.

Title “REGRESSION”;

/* ROBUST REGRESSION */

procrobustreg method=mm data=booted;

model Iny = x / diagnostics leverage;

output out=robout r=resid sr=stdres;

run;

Calculation regression based on robust (weighted) Huber.
The full syntax is given as follows.

/* ROBUST (WEIGHTED) HUBER */

Title “ROBUST (WEIGHTED) HUBER”;

procrobustreg method=m(wf=huber(c=1.345)) data=booted,
model Iny = x / diagnostics leverage;

output out=robout r=resid sr=stdres;
run;

e Calculation regression based on robust (weighted) Cauchy.
The full syntax is given as follows.

/* ROBUST (WEIGHTED) CAUCHY */

Title “ROBUST (WEIGHTED) CAUCHY”;

procrobustreg method=m(wf=cauchy(c=2.385)) data=booted,
model Iny = x / diagnostics leverage;

output out=robout r=resid sr=stdres;

run;

o Calculation regression based on robust (weighted) Fair. The
full syntax is given as follows.

/* ROBUST (WEIGHTED) FAIR */

Title “ROBUST (WEIGHTED) FAIR”;

procrobustreg method=m(wf=fair(c=1.4)) data=booted;
model Iny = x / diagnostics leverage;

output out=robout r=resid sr=stdres;

run;

ods rtf close;

The syntax of “ods rtf close” gives an order to close the file
in Microsoft Word. This means that the output will be
generated in the Microsoft Word format.

III.  RESULTS

The results for the first model without involving weighted
procedures is given in Tables I and II. Table I shows that the
model predicts the dependent variable well. The p-value is less
than 0.05, and this indicates that, overall, the model statistically
significantly predicts the outcome variable and is a good fit for
the data. Figure 1, indicates the fit plot for Iny.

A. Result for Exponential Fit

Fit Plot for y

Observations %
Parameters
MSE

Raw Variance 12
Proj Varlance 131

288

T T
0 10 20 30 40 50
X

[———TFt_O 95% Confidence Limits_J 95% Prediction Limits |
Fig. 1. The fit plot for y vs x

TABLE 1. ANOVA

Sum of Mean Approx
Source | DF Squares Square F Value 15)1!)>F
Model 2 100489 50244 39450.4 | <.0001
Error 34 43.3029 1.273
Total 36 100533
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TABLE II. PARAMETER ESTIMATES hly =3.5799+0.0160x (4)
P ¢ Estimat Approx Approximate 95% . L .
arameter Sumate | gtd. Error Confidence Limits From the robust regression which is weighted by Huber, the
A 35.9735 0.2564 35.4525 36.4945 value of R-Square is 0.9577 and AIC value is given as 24.3544.
b 0.0160 0.000219 0.0155 0.0164

Robust Fit for Iny
With 95% Confidence Limits

From Table II, we can write an exponential model as

y=35.9735 0160 )

Model (2) can be transformed into a linear form by taking,
it can be written as follows

In (y)=1In (35.9735)+0.0160x
In(y)=3.5827+0.0160x

Iny

Table III gives the information of exponential fit. From 36
Table III, the R-square value indicates how much of the total -
variation in the dependent variable or variability of the data is x
explained by the regression model. In this case, 97.98 can be
explained, which is very large. The AIC value is about 10.649,
which is the smallest value among all proposed methods. A

Fig. 3. Fit plot for Iny

TABLE IV. PARAMETER ESTIMATES

good model is the one that has minimum AIC value.

Parameter Estimates
95% .
TABLEIIl.  EXPONENTIAL FIT -
Parameter | DF | Estimate ESrtr(:;r Confidence Sclilalre Cﬁf S>
n SSE R-Square AIC Limits q >4
36 | 43.302936 0.988339 10.64925 Intercept 1 3.5729 0.0087 | 3.554 | 3.590 | 168673 | <0001
) X 1 0.0162 0.0003 | 0.016 | 0.017 | 2383.2 | <0001
B. Result for Robust Regression Scale 0 | 00282
Figure 2 shows the fit plot for Iny vs x. Previously we used
the original data, while in this section we are using the TABLE V.  PARAMETER ESTIMATION
transformed data. Table IV shows the parameter estimates. We -
. . Goodness-of-Fit
can write an exponential model as: Statistic Value
_ R-Square 0.7894
Iny =3.5729+0.0162x 3) AICR 352413
The R-Square value indicates the total variation in the DS Jiﬁce 30269230952
dependent variable. In this case, 78.94 can be explained and the -
value of AIC is given as 28.24. Detailed information is givenin D, Result for Robust (Weighted) Cauchy

Table V.

In Figure 4 the result of robust regression which is
weighted by Cauchy is plotted. From Table VIII, we can write
a robust regression which is weighted by Huber as follows

Iny=3.5798+0.0160x (%)

Robust Fit for Iny
With 95% Confidence Limits

444

Robust Fit for Iny

With §5% Confidence Limits

Iny

40

Fig. 2. Fit plot for Iny

C. Result for Robust (Weighted) Huber

Figure 3 gives the plot for Iny vs x for Huber robust
regression. From the Table VI, we can write a robust regression
which is weighted by Huber as:

Fig. 4.

Fit plot for Iny
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The value of R-Square is 0.4797 and AIC value is given as
377.98. A robust regression which is weighted by Cauchy
seems not to be a good procedure for the forecasting.

TABLE VI.  PARAMETER ESTIMATES FOR HUBER REGRESSION
Parameter Estimates
95% .
Parameter | DF | Estimate Std. Confidence Chi- Pl:>
Error .. Square | ChiSq.
Limits
Intercept 1 3.5799 0.0076 | 3.5651 | 3.594 | 222668 | <.0001
X 1 0.0160 0.0003 | 0.0154 | 0.016 | 2807.09 | <.0001
Scale 1 0.0335
TABLE VII. PARAMETER ESTIMATES FOR HUBER REGRESSION
Goodness-of-Fit
Statistic Value
R-Square 0.9577
AICR 24.3544
BICR 29.2774
Deviance 0.0249

TABLE VIII. PARAMETER ESTIMATES FOR CAUCHY REGRESSION

Parameter Estimates

Vol. 8, No. 4, 2018, 3162-3167 3166
TABLE X. PARAMETER ESTIMATES FOR FAIR REGRESSION
Parameter Estimates
95% .
Parameter | DF | Estimate Std. Confidence Chi- Pl: >
Error o Square | ChiSq.
Limits
Intercept 1 3.5803 | 0.0086 | 3.563 3.597 | 171908 | <0.0001
X 1 0.0160 | 0.0003 | 0.015 0.016 | 2162.9 | <0.0001
Scale 1 0.0336
TABLE XI. PARAMETER ESTIMATES FOR FAIR REGRESSION
Goodness-of-Fit
Statistic Value
R-Square 0.9616
AICR 12.3093
BICR 17.8695
Deviance 0.0121

F. Method Comparison

Table XII shows the comparison of the five different
methods. We summarized the output of the gained model with
their parameter estimates.

95% .
Parameter | DF | Estimate Std. Confidence Chi- Pl:>
Error o . Square ChiSq.
Limits
intercept | 1| 35798 | X008 135041339 01478 | <0.0001
X 1 0.0160 0'200 0'315 0'21 2540.99 | <0.0001
Scale 1 0.0336
TABLE IX. PARAMETER ESTIMATES FOR CAUCHY REGRESSION
Goodness-of-Fit
Statistic Value
R-Square 0.4797
AICR 377.9854
BICR 383.0731
Deviance 0.4252
E. Result for Robust (Weighted) Fair

Below is the result of Fair robust regression. From Table X,
we can write a fair robust regression is given in (6). The value
of R-Square is 0.9616 and AIC value is given 12.3009.

Iny =3.5803+0.0160x (6)

Robust Fit for Iny
With 95% Confidence Limits

444

Iny

404

384

364

X

Fig. 5. Fit plot for Iny

TABLE XII. PARAMETER ESTIMATES COMPARISON
Parameter Model AIC
Estimates R-Square
y=359735¢0016%
Exponential Fit or in a linear form 0.988339 1.064.925
In(y)=3.5827 +0.0160 x
Robust Iny =3.5729 +0.0162x 0.7894 282.413

Regression
Robust Huber Iny=3.5799 +0.0160 x 0.9577 243.544
Robust Cauchy Iny=3.5798 +0.0160 x 0.4797 3.779.854

Robust Fair In y =3.5803 +0.0160 x 0.9616 123.093

IV. DISCUSSION AND CONCLUSION

The main objective of this research is to compare the
parameter estimate between several proposed calculations and
also to find the best calculation which can represent the data
through modeling techniques. We have given an example of
cell doubling data by using PROC NLIN and PROC
ROBUSTREG. In this paper, five different methods were used
(Table XII): (i) Exponential fit (ii) Robust regression (iii)
Robust (weighted) Huber (iv) Robust (weighted) Cauchy (v)
Robust (weighted) fair. This paper provides only a preliminary
overview of the above mentioned different techniques that can
be employed. From the results, we can see that the exponent fit
shows a very good fitting result, followed by robust regression
weighted by fair techniques. Both methods produced the
highest R? and the lowest AIC. This indicates that exponential
fit is the best method, followed by robust fair regression. The
other methods fit the model poorly. This may be due to some
outliers through the output. The best way to handle outliers is
to delete them from the set of data and then rerun to the
analysis once again. To keep the efficiency and accuracy of the
proposed model, it is necessary to have a good way of
calculation with some improvements of the proposed strategy.
The exponential fit reveals the findings more explicitly
compared to the other proposed methods.
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