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Abstract-This paper supplies a calculation method for the 
parameter estimates of an exponential equation through SAS 
algorithm. The aim of this paper is to investigate the efficiency of 
the gained parameter estimates through the forecasting 
performance. The proposed calculation method can provide a 
very useful technique to develop an exponential equation with 
better accuracy performance. This research paper illustrates a 
sample of the data obtained from the established study, which 
characterize the proliferative capacity of mesenchymal stem cells. 
This paper also provides the specific algorithm for the parameter 
estimates. 
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I. INTRODUCTION 

Regression analysis is a statistical methodology that uses 
the relationship between two or more quantitative variables in a 
way that one variable can be predicted from the other, or 
others. This methodology is widely used in business, social, 
behavioral and biological sciences, including agriculture and 
fishery research [1]. For example, fish weight at harvest can be 
predicted by utilizing the relationship between fish weights and 
other growth affecting factors like water temperature, dissolved 
oxygen, and free carbon dioxide. There are other situations in a 
fishery where relationships among variables can be exploited 
through regression analysis [1]. Regression analysis serves 
three major purposes: (1) description, (2) control and (3) 
prediction. We frequently use equations to summarize or 
describe data. Regression analysis is helpful in developing such 
equations. For example, we may collect a considerable amount 
of fish growth data and a data on a number of biotic and abiotic 
factors and a regression model would probably be a much more 
convenient and useful summary of those data than a table or a 
graph. Besides prediction, regression models may be used for 
control purposes. A cause and effect relationship may not be 
necessary if the equation is to be used only for prediction [2]. A 
functional relationship between two variables is expressed by a 
mathematical formula. If x denotes the independent variable 
and y the dependent variables, a functional relationship is of 
the form  xfy  . 

Given a particular value of x, the function indicates the 
corresponding value of y. A statistical relation, unlike a 
function, is not a perfect one. In general, the observations for a 

statistical relation do not fall directly on the relationship’s 
curve. Depending on the nature of the relationship between x 
and y, regression approach may be classified into two 
categories, linear regression and nonlinear regression models. 
The models that are linear in these parameters are known as 
linear models, whereas in nonlinear models parameters show 
nonlinearity. Linear models are generally satisfactory 
approximations for most regression applications. There are 
occasions, however, when an empirically indicated or a 
theoretically justified nonlinear model is more appropriate [3]. 

A.  Linear Regression 

Linear regression is used to study the linear relationship 
between a dependent variable Y and one or more independent 
variables X. The dependent variable Y must be continuous, 
while the independent variables may be either continuous, 
binary, or categorical. The initial judgment of a possible 
relationship between two continuous variables should always 
be made on the basis of a scatter plot (scatter graph). This type 
of plot will show whether the relationship is linear or nonlinear. 
Performing a linear regression makes sense only if the 
relationship is linear. Other methods must be employed to 
study nonlinear relationships [4]. A model with more than 
predictor variables is a straightforward one. The model can be 
stated as follows: 

iεxββy i10i      (1) 

where iy is the value of the response variable in the ith trial, β0 
and β1 are parameters xi is a known constant, namely the ith 
value of the predictor variable and εi is a random error term 
with mean zero and variance σ2

 and their covariance is zero [5]. 

B. History of the Exponential Function 

The exponential is one of the most significant and widely 
occurring functions. In biology, it may depict the growth of 
bacteria or animal populations, the reduction of the number of 
bacteria in response to a sterilization process, the development 
of a tumor or the absorption or elimination of a drug. 
Exponential growth cannot go on forever because of limitations 
of nutrients, etc. Knowledge of the exponential function makes 
it more comfortable to understand birth and death rates, even 
when they are not perpetual. In physics, the exponential 
function describes the disintegration of radioactive nuclei, the 
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emission of light by atoms, the assimilation of light as it passes 
through matter, the change of voltage or current in some 
electrical circuits, the variance of temperature with time as a 
warm object cools, and the rate of some chemical reactions [1]. 
Although the exponential distribution provides a simple, 
elegant and closed form solution to many problems, it does not 
offer a reasonable parametric fit for some practical applications 
where the underlying failure rates are nonconstant, presenting 
monotone shapes. Recently, in the procedure of overcoming 
such problems, new categories of examples were introduced 
based on adjustments of the exponential distribution. Authors 
in [6] offered a generalized exponential distribution, which can 
hold data with increasing and decreasing failure rate function. 
Authors in [7] ushered in the exponential geometric distribution 
with decreasing failure rate, authors in [8] proposed a two-
parameter distribution known as exponential-Poisson 
distribution, which takes in a decreasing failure rate and 
authors in [3] proposed another modification of the exponential 
distribution with decreasing failure rate function This model is 
inferred in a complementary risk scenario [9] where the 
lifetime associated with particular danger is not evident, rather 
we observe just the maximum lifetime value among all risks . 

C. Exponential Growth 

Exponential growth is often used to model the growth of 
organism populations in a resource-rich environment. Here 
“resource-rich” means that there is abudance of food and other 
resources necessary for the population to grow. For example, 
the initial growth of a cell bacteria in a mouth is often modeled 
as exponential. The justification for this model is that the rate at 
which a population of organisms grows should be proportional 
to their number, assuming that the organisms reproduce at a 
constant rate. For example, if you double the size of a 
population, then this should precisely double the rate at which 
the population bears an offspring, and should, therefore, double 
the rate at which the size of the population increases. What this 
means is that the population A of a given organism in a 
resource-rich environment should satisfy the differential 
equation 

Ax,
dx

dA
  

where x is some constant that depends on the rate of 
reproduction. Thus the population grows exponentially 

bx
0eAA   

This model predicts that the population A will grow 
indefinitely, which cannot be true in any real situation. 
Eventually, any population will run out of resources such as 
food or space to grow. However, the exponential model often 
gives fairly accurate results in cases where the short-term 
growth of a population is not inhibited by limited 
resources[10]. 

D. Interpreting R2 

R2 is frequently defined as the proportion of variance of the 
response that is predictable (or explained) from the regressor 
variables, that is the variability explained by the model. A low 
value of R2 can suggest that the assumptions of linear 

regression are not satisfied. Plots and diagnostics will 
substantiate this suspicion. 

II. MATERIALS AND METHODS  

We used the data which characterize the proliferative 
capacity of mesenchymal stem cells. The data are composed of 
two variables which are the days of the culture (X) and 
population doubling level (lnY). First, we bootstrap the data in 
order to increase the sample size and also to optimize the 
parameter estimates. Then, we estimate the parameters through 
the exponential curve fitting and transform the nonlinear model 
into a linear form. This would bring a linear equation form. 
From the equation, we estimate the value of the independent 
variable (x) and fit the data with robust weighted regression by 
Cauchy, robust Fair weighted regression and robust weighted 
regression by Huber. Then a covariate-dependent variable is 
used to examine the differences in performance of the model 
suitability. 

A. The Algorithm of Exponential Calculation 

The algorithm showed below is the way of inserting data in 
SAS algorithm and the way of calculating the bootstrapping 
method. 

 Data in SAS format. The name of the dataset is given as 
cell_growth. The data consist of two variables x and ln y 

Data cell_growth; 
input x y lny; 
cards; 
0.00 38.00 3.64 
5.00 39.31 3.67 
8.00 39.74 3.68 
10.00 40.98 3.71 
13.00 43.10 3.76 
17.00 45.78 3.82 
20.00 49.15 3.89 
22.00 49.90 3.91 
24.00 53.98 3.99 
28.00 57.46 4.05 
31.00 61.03 4.11 
34.00 63.80 4.16 
37.00 65.52 4.18 
40.00 68.54 4.23 
44.00 72.62 4.29 
47.00 75.42 4.32 
50.00 79.38 4.37 
53.00 83.31 4.42 
; 
run; 

 Adding bootstrapping algorithm to the methodology 
building. cell_growth data were bootstrapped two times 
with resampling. The following procedure was given in 
SAS syntax as follows. The new data which are generated 
by the SAS procedure will be named as booted. The 
produce data in the study will be print through the print 
procedure. 

 We also add the syntax of ‘ods rtf file='abc.rtf' 
style=journal’ in the SAS language in order to get the 
output in Microsoft Word format. 

%MACRO bootstrap(data=_last_, booted=booted, boots=2, 
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