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Abstract—Truly representative precipitation map generation of
mountain regions is a difficult task. Due to poor gauge
representativity, complex topography and uneven density factors
make the generation of representative precipitation maps a very
difficult task. To generate representative precipitation maps, this
study focused on analyzing four different mapping techniques:
ordinary Kriging, spline technique (SP), inverse distance
weighting (IDW) and regression kriging (RK). The generated
maps are assessed through cross-validation statistics, spatial
cross-consistency test and by water balance approach. The largest
prediction error is produced by techniques missing information
on co-variables. The ME and RMSE values show that IDW and
SP are the most biased techniques. The RK technique produced
the best model results with 1.38mm and 72.36mm ME and RMSE
values respectively. The comparative analysis proves that RK
model can produce reasonably accurate values at poorly gauged
areas, where geographical information compensated the poor
availability of local data.

Keywords-mountain regions; poor gauge representativity;
spatial interpolation techniques

1. INTRODUCTION

Scientists generally agree that the earth is undergoing
critical climate changes [1-5]. Climatic changes based on the
hydrology, development and management of water resources
have been under major attention over the years. The distributed
hydrological models are gaining huge standing in analyzing
and investigating the overall impacts on mountain regions and
their environment [6-8]. Distributed hydrological models
require input variables like estimates of climatic variables at
regular and continuous intervals as pre-requisites for their
proper functioning [5, 6, 9, 10]. The amount of rainfall is the
most vital parameter for any distributed hydrological model.
Nevertheless, the amount of rainfall is a matter of various
uncertainties like measurement errors, systematic errors during
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applying interpolation and stochastic errors resulting from the
random nature of rainfall. The performance of the models
depends heavily upon the accurate estimation of precipitation
over specific area and time. The results can be highly
compromised [11]. This challenge of reliable and accurate
rainfall estimates increases in mountain regions where the
geography is complex and measuring stations are scattered over
vast areas and concentrated in the valleys [12-14]. The
measurement of accurate data for the mountainous range is a
very difficult task, resulting in poor representation in the model
that analyzes the various rainfall patterns. Resultantly, in these
types of situations, when no single method is optimal nor the
accuracy of a specific interpolation technique is proven, the
performance relies on the variable under study, spatial
configuration, and the assumptions used in the estimation [15-
17]. The accuracy of measured data under a certain technique
can be verified by comparing and analyzing by applying
different techniques to the same data. In order to achieve this
objective, the current study analyzes the range of stochastic and
deterministic mapping techniques to estimate the values at un-
gauged locations.

II.  DATA AND MODELS

A.  Study Area

The study was carried out at the Alpine area of Kitzbiihl
Ache region situated in the Austrian Eastern Province of Tyrol
with an area of about 2000km’. Complete details about the
study region are given in [18]. The available 30 year time series
(1960-1990) of mean annual precipitation of 14 gauge stations
are taken into consideration for spatial interpolation. The
catchment topography is highly rugged with elevation that
ranges from 400m to 2400m above m.s.l as shown in Figure 1.
The catchment shows strong seasonal precipitation behaviors.
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B. Spatial Interpolation Techniques

Mapping techniques are categorized into deterministic and
stochastic approaches. The former technique includes inverse
distance weighing and spline and is used for interpolation of
precipitation, whereas, the later technique includes ordinary
kriging [19-21]. The regression is catried out on the basis of
spatial correlation of the different variables [22-25]. The model
is able to remove the drifts with validated intrinsic hypothesis
[17, 26]. This approach has been used for climatic mapping
[20, 26-28]. These techniques are briefly presented here,
whereas the detailed discussion is referred to [20, 29, 30].
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Study area with locations of 14 rain gauge stations

Fig. 1.

C. IDW Technique

It is form of a deterministic technique that interpolates
climatic data by averaging sample values in the neighborhood
of each unknown point [31-33]. It’s assumed that the variables
estimated have decreasing influence or weight with increasing
distance from known locations. The formula is given as:

T(X) =3 A*T(X) (1)
1
4= d(x,x)".S @

1
S=>_—_—- ,follows » A =1.
2 dny 2

where 7(x)= interpolated value at location x, A= the weight of

observed values at the i™ location, 7(X;)= observed values at i"
location, d(x, x;)= distance from known point to interpreted
point, and P= weighting power. The choice of power can
significantly influence the interpolation results. High power
assigns more weightage to closer points and results in more
information, while lower power assigns more weightage to
faraway samples with little information.

D. SP Technique

It is a deterministic technique, which represents 2-
dimensional curves on 3-dimensional surfaces [34]. The
technique assigns the mathematical functions to certain number
of neighboring points that decrease the whole surface
curvature. This produces an even surface while passing around
the sample points. This is alike to fit a rubber piece across the
calculated sample points whilst decreasing the entire surface
curvature. The techniques commonly used are regularized, and
tension. The first one generates the uniform changing surface

with values that may remain outside the sample data range,
while the other one influences the rigidity of the surface with
values confined by the sample data range. After visual
inspection and results through cross-validation statistics, the
regularized spline method was selected from both types. The
following formula is used for surface interpolation:

T(X)=f(x,9)+ 2 AR®T) 3)

1 r2 |: r
R(r)y=—~1{— ln(J+c—1:|
27 4 27
2 r r
+7 {KO (rj +c+In (Zﬂﬂ}

S, y)=a;+ax+azy ®)

where f"( X)= interpolated spline value at location x, f{x; y)=

unknown smooth function, A= the coefficients found by a
solution of a system of linear equations, r= the distance from
known point to interpreted point, K,= the modified Bessel
function, C= the constant equal to 0.577215, and o~ the
coefficients found by a solution of a system of linear equations.

E.  OK Technique

This technique uses a semivariogram for spatial prediction
and works the same way as IDW works, which weights the
neighboring measured values. However, weights are not only
based on distances but also depend on total spatial arrangement
of known points. Author in [35] developed a general formula
for kriging, after a first use of the theory in the mining industry
by D.L. Krige:

4)

F(X,) = Y AT(X) ©

where f"(XO)= the interpolated value at location x, T(X;)= the

observed value at i location, and 1= the weight of observed
values at the i location. The /; depends on: Fitting model to
the number of measured points, distance to the prediction
location and spatial relationships among the measured values
around the prediction locations. Kriging minimizes the
estimator variance and ensures the unbiased estimation often
known as “best linear unbiased estimator (BLUE)” with
weights sum to unity [36]. Estimator variance can be achieved
by:

S AKX X))+ = p(X,.X,) ™

for all j, where p=Lagrangian multiplicator. After performing
semivariogram analysts, the Gaussian variogram model is
selected as a best-fit model from all other models to predict

T(X,) . and the weights /; are calculated from the matrix
equation:

A
c=A"b, c:{ } ®)
¢

www.etasr.com

Laghari et al.: Analysis of Mapping Techniques for Mountain Precipitation: A Case Study ...



Engineering, Technology & Applied Science Research

Vol. 8, No. 4, 2018, 3213-3217 3215

where matrix 4 contains the semivariances of all data point
pairs, b is a vector containing semivariances between the
location of interest and observed point. /; is the weight to be
calculated [20, 37-41].

F.  RK Technique

Authors in [17] conclude that ordinary kriging does not
produce representative precipitation values in mountain regions
all the time. Alternative techniques might fully utilize the
relationship between predicted variable and co-variables for
variability analysis. Two of these techniques are cokriging and
regression kriging. Due to poor cross-covariance between
precipitation and any topographical variable, the former
application did not produce good results. However, in such
situations regression kriging seemed the natural choice, which
is commonly used in hydro-sciences [42, 43]. The technique
defines the relationship between target and co-variables in
order to predict the values at grid nodes through linear
regression. The auxiliary variables are easy to measure, they
provide an alternative to target variable at the under sampled
locations to model and quantify the existing patterns. To
quantify the existing trend of the variable and its variability in a
regression model, we preferred to use multiple linear
regressions - the further extension of straightforward linear
regression with the variety of descriptive variables. As altitude
alone flopped to signify the variation of precipitation
sufficiently, we tested other variables like slope, topographic
index, aspect, hill shade, curvature etc. These extra explanatory
variables were obtained from the elevation model, in order to
make better predictions of the target variables at grid nodes of
the DEM. We adopted stepwise procedures to select the most
crucial variables and the subsequent regression equation to
predict the target variable at un-sampled locations. The
regression led to a three parameter equation, significant at 5%
level, explaining 62% of variability of precipitation.

T, :=1075.94 +42.59*[Hill - shade]

9
+0.26 %[ DEM | ~13.98 %[ Slope] )

The resulting regression residuals (¢) are further kriged at
grid nodes by fitting variogram models, and then finally both
values are summed up to predict the target variable values.

T (X) = To(X) + e (X) (10)

where fRK = Combined predicted values of target variable,

T » = Regression predicted values of target variable, §OK =
Kriged values of regression residuals.

III.  VALIDATION METHODS

The mapping techniques performance was assessed by
following three steps:

A. Cross-Validation Statistics

The cross validation method depends on eliminating one
sample location (measurement station) from the data set at a
time and calculating the value of the removed sample with the
remaining data points. This routine was followed for each
measurement station. The comparative indices were then used

as a measure of prediction quality by the ME and the RMSE,
which are defined as follows:

ME=L13F 1) ()
niicy
RMSE={12(T2— )} (12)
nio

where 7 is the number of validation points, and Tl &T; are the

predicted and observed values at location i. The ME criterion is
used to check the conditional bias property, while the RMSE
criterion assesses the precision quality. A smaller value of
RMSE indicates higher accuracy and vice versa. Cross
validation statistics can be used to find the optimal mapping
technique, however, the presence of short range correlations in
data may raise questions regarding the reliability of its
statistical results [35].

B.  Cross-Consistency

A second step to analyze reliability and consistency of
predictions, spatial cross-consistency approach was adopted
[44]. All statistical parameters of different calculated
precipitation mapping estimates were compared with a
referenced precipitation map (RPM). This RPM was carefully
produced during a 4 year project (www.waterpool.org) in
which different experts from different institutes were involved,
and results were consistent with water balance estimates.

C. Water Balance Approach

Finally all calculated precipitation maps including the RPM
were evaluated by means of a general water balance approach.

0 (discharge) =P ( precipitation)

(13)

—ET(evapotranspiration) - AS(Storage changes)

Gridded discharges were calculated for each mapping
technique as a result of subtraction of actual evapotranspiration
grid estimates from interpolated mapping precipitation grid
estimates. The actual evapotranspiration values are obtained
from the hydrological Atlas of Austria. Storage changes can be
ignored, as for long-range mean annual water balances; it was
assumed that there is no sensible change in the water contents
of different reservoirs, e.g. groundwater, snow cover [44, 45].
The difference between the calculated discharges with observed
discharges gives a measure for the reliability and consistency of
the precipitation.

IV. RESULTS AND DISCUSSION

The ME values clearly indicate the superiority of RK
technique over the other techniques, showing almost 42% less
bias than OK. Whereas IDW and SP techniques produce higher
bias, almost 2 to 5 times higher than OK technique. The RMSE
results also reveal the primacy of RK technique over the other
ones. However, all techniques yield high uncertainty in
calculated values. Thus, considering co-variables into account
certainly improves the performance by decreasing RMSE
values from 111 to 72. The spatial cross-consistency tests are
also conducted by computing precipitation maps with
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referenced precipitation raster. The same strategy was earlier
adopted in [46]. The comparison results are given in Figure 2.
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Fig. 2. Cross validation statistics of four mapping techniques applied in
study region are the ME and RMSE

The statistical parameters clearly show the visible
differences. However, the RK technique yields the most
promising results except in maximum values due to the
incorporation of topographical information. Similarly the
percentile variation in RK map is closely matched with
referenced map. To further analyze all techniques we analyzed
their performances, first at 4 catchment levels and then through
elevation zones of the whole basin (Figures 3 and 4). The
position of gauge stations are highly biased, more than 80%
stations are located below 1000m (Zone-1), covering only 32%
of basin area. Zones 2 and 3 contain only one station each, with
covering 39% and 26% of area respectively. The top most
zone-4 possesses only 3% area without any gauge station.
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Fig. 3. Summary statistics of percent differences between RPM and
computed precipitation estimates by IDW, Spline, OK and RK for the entire
region. Negative values indicate a lower value with respect to the referenced
map value, while positive values indicate the opposite.
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Fig. 4. Comparative statistics of percent differences between RPM and
computed precipitation estimates by IDW, Spline, OK and RK at four basins.
Negative values indicate the less value from the referenced map and positive
values indicate the opposite.

The basin level values follow the same pattern of mean
annual values in the region. RK method is found to present

better result in three basins, whereas in Kitzbiileher Ache the
other techniques have better estimates. The superiority of usual
techniques like IDW, spline over geostatistical techniques
justifies the conclusions of many other studies. These
conclusions are strengthened by further analysis on the basis of
altitude. Without elevation information the IDW, spline and
OK techniques performed comparatively well below 1000m
altitude which contains 86% of the total stations under study.
However, at the higher altitudes these three techniques could
not be effective, where the consistency ranges at 8% at zone-2
and 33% at zone-4 resulting in relegation of their ability at
higher sparse data zones. During semivariogram modeling the
performance of OK at high zone was poor, as the spatial
dependence resulted to be higher at zone 1 and weakened in
zones 2 and 3. For analyzing the mapping techniques
comparatively, all stations were included in the final mapping.
The better results from RK at higher zones prove the
importance of geographical information in estimating the
mapping at higher sparse data zones. A water balance approach
was adopted for the four interpolation precipitation maps in
order to validate the RPM. Mean annual evapotranspiration
estimates of the whole region were taken from the hydrological
atlas of Austria. Total runoff was computed from precipitation
maps and evapotranspiration estimates. The difference between
gauged runoff and computed runoff found out to be only 0.4%
with RPM, 2.7% with RK and 13-20% with other techniques.
These outcomes validate the overall superiority of RK
technique in the higher altitude region with sparse data.

IDw Spline

Percent Differences

@Zone-1<1000 m @Zone-11>1000 < 1500 m &@Zone-III>1500 < 2000 m mZone-IV>2000 m

Fig. 5. Comparative statistics of percent differences between RPM and
computed precipitation estimates by IDW, Spline, OK and RK at four
elevation zones. Negative values indicate the less value from the referenced
map and positive values indicate vthe opposite.

V. CONCLUSION

Comprehensive analysis clearly indicates that RK model
produces reasonably accurate average annual precipitation
values. The primacy of this technique is particularly observed
at high altitude sparse data zones where mapping variables are
unobtainable. However, the spline and IDW model results also
produce good results over geostatistical techniques at a low
level height with a wide network of gauge stations.
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