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Abstract—Truly representative precipitation map generation of 
mountain regions is a difficult task. Due to poor gauge 
representativity, complex topography and uneven density factors 
make the generation of representative precipitation maps a very 
difficult task. To generate representative precipitation maps, this 
study focused on analyzing four different mapping techniques: 
ordinary kriging, spline technique (SP), inverse distance 
weighting (IDW) and regression kriging (RK). The generated 
maps are assessed through cross-validation statistics, spatial 
cross-consistency test and by water balance approach. The largest 
prediction error is produced by techniques missing information 
on co-variables. The ME and RMSE values show that IDW and 
SP are the most biased techniques. The RK technique produced 
the best model results with 1.38mm and 72.36mm ME and RMSE 
values respectively. The comparative analysis proves that RK 
model can produce reasonably accurate values at poorly gauged 
areas, where geographical information compensated the poor 
availability of local data. 

Keywords-mountain regions; poor gauge representativity; 
spatial interpolation techniques  

I. INTRODUCTION  

Scientists generally agree that the earth is undergoing 
critical climate changes [1-5]. Climatic changes based on the 
hydrology, development and management of water resources 
have been under major attention over the years. The distributed 
hydrological models are gaining huge standing in analyzing 
and investigating the overall impacts on mountain regions and 
their environment [6-8]. Distributed hydrological models 
require input variables like estimates of climatic variables at 
regular and continuous intervals as pre-requisites for their 
proper functioning [5, 6, 9, 10]. The amount of rainfall is the 
most vital parameter for any distributed hydrological model. 
Nevertheless, the amount of rainfall is a matter of various 
uncertainties like measurement errors, systematic errors during 

applying interpolation and stochastic errors resulting from the 
random nature of rainfall. The performance of the models 
depends heavily upon the accurate estimation of precipitation 
over specific area and time. The results can be highly 
compromised [11]. This challenge of reliable and accurate 
rainfall estimates increases in mountain regions where the 
geography is complex and measuring stations are scattered over 
vast areas and concentrated in the valleys [12-14]. The 
measurement of accurate data for the mountainous range is a 
very difficult task, resulting in poor representation in the model 
that analyzes the various rainfall patterns. Resultantly, in these 
types of situations, when no single method is optimal nor the 
accuracy of a specific interpolation technique is proven, the 
performance relies on the variable under study, spatial 
configuration, and the assumptions used in the estimation [15-
17]. The accuracy of measured data under a certain technique 
can be verified by comparing and analyzing by applying 
different techniques to the same data. In order to achieve this 
objective, the current study analyzes the range of stochastic and 
deterministic mapping techniques to estimate the values at un-
gauged locations.  

II. DATA AND MODELS  

A. Study Area 

The study was carried out at the Alpine area of Kitzbühl 
Ache region situated in the Austrian Eastern Province of Tyrol 
with an area of about 2000km2. Complete details about the 
study region are given in [18]. The available 30 year time series 
(1960-1990) of mean annual precipitation of 14 gauge stations 
are taken into consideration for spatial interpolation. The 
catchment topography is highly rugged with elevation that 
ranges from 400m to 2400m above m.s.l as shown in Figure 1. 
The catchment shows strong seasonal precipitation behaviors. 
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where matrix A contains the semivariances of all data point 
pairs, b is a vector containing semivariances between the 
location of interest and observed point. λi is the weight to be 
calculated [20, 37-41].  

F. RK Technique  

Authors in [17] conclude that ordinary kriging does not 
produce representative precipitation values in mountain regions 
all the time. Alternative techniques might fully utilize the 
relationship between predicted variable and co-variables for 
variability analysis. Two of these techniques are cokriging and 
regression kriging. Due to poor cross-covariance between 
precipitation and any topographical variable, the former 
application did not produce good results. However, in such 
situations regression kriging seemed the natural choice, which 
is commonly used in hydro-sciences [42, 43]. The technique 
defines the relationship between target and co-variables in 
order to predict the values at grid nodes through linear 
regression. The auxiliary variables are easy to measure, they 
provide an alternative to target variable at the under sampled 
locations to model and quantify the existing patterns. To 
quantify the existing trend of the variable and its variability in a 
regression model, we preferred to use multiple linear 
regressions - the further extension of straightforward linear 
regression with the variety of descriptive variables. As altitude 
alone flopped to signify the variation of precipitation 
sufficiently, we tested other variables like slope, topographic 
index, aspect, hill shade, curvature etc. These extra explanatory 
variables were obtained from the elevation model, in order to 
make better predictions of the target variables at grid nodes of 
the DEM. We adopted stepwise procedures to select the most 
crucial variables and the subsequent regression equation to 
predict the target variable at un-sampled locations. The 
regression led to a three parameter equation, significant at 5% 
level, explaining 62% of variability of precipitation.  

 
   1

ˆ : 1075.94 42.59*  

       0.26* 3.98*

R Hill shade

DEM Slope

T   

 
 

 (9) 

The resulting regression residuals (ε) are further kriged at 
grid nodes by fitting variogram models, and then finally both 
values are summed up to predict the target variable values. 

ˆ ˆ ˆ( ) ( ) ( )RK R OKT X T X X     (10) 

where RKT̂ = Combined predicted values of target variable,

RT̂ = Regression predicted values of target variable, OK̂ = 

Kriged values of regression residuals. 

III. VALIDATION METHODS 

The mapping techniques performance was assessed by 
following three steps:  

A. Cross-Validation Statistics 

The cross validation method depends on eliminating one 
sample location (measurement station) from the data set at a 
time and calculating the value of the removed sample with the 
remaining data points. This routine was followed for each 
measurement station. The comparative indices were then used 

as a measure of prediction quality by the ME and the RMSE, 
which are defined as follows: 
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where n is the number of validation points, and ˆ &T Ti i  are the 

predicted and observed values at location i. The ME criterion is 
used to check the conditional bias property, while the RMSE 
criterion assesses the precision quality. A smaller value of 
RMSE indicates higher accuracy and vice versa. Cross 
validation statistics can be used to find the optimal mapping 
technique, however, the presence of short range correlations in 
data may raise questions regarding the reliability of its 
statistical results [35]. 

B. Cross-Consistency 

A second step to analyze reliability and consistency of 
predictions, spatial cross-consistency approach was adopted 
[44]. All statistical parameters of different calculated 
precipitation mapping estimates were compared with a 
referenced precipitation map (RPM). This RPM was carefully 
produced during a 4 year project (www.waterpool.org) in 
which different experts from different institutes were involved, 
and results were consistent with water balance estimates.  

C. Water Balance Approach 

Finally all calculated precipitation maps including the RPM 
were evaluated by means of a general water balance approach. 

   
   – –  

Q discharge P precipitation

ET evapotranspiration S Storage changes




 (13) 

Gridded discharges were calculated for each mapping 
technique as a result of subtraction of actual evapotranspiration 
grid estimates from interpolated mapping precipitation grid 
estimates. The actual evapotranspiration values are obtained 
from the hydrological Atlas of Austria. Storage changes can be 
ignored, as for long-range mean annual water balances; it was 
assumed that there is no sensible change in the water contents 
of different reservoirs, e.g. groundwater, snow cover [44, 45]. 
The difference between the calculated discharges with observed 
discharges gives a measure for the reliability and consistency of 
the precipitation. 

IV. RESULTS AND DISCUSSION 

The ME values clearly indicate the superiority of RK 
technique over the other techniques, showing almost 42% less 
bias than OK. Whereas IDW and SP techniques produce higher 
bias, almost 2 to 5 times higher than OK technique. The RMSE 
results also reveal the primacy of RK technique over the other 
ones. However, all techniques yield high uncertainty in 
calculated values. Thus, considering co-variables into account 
certainly improves the performance by decreasing RMSE 
values from 111 to 72. The spatial cross-consistency tests are 
also conducted by computing precipitation maps with 
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