
Engineering, Technology & Applied Science Research Vol. 8, No. 4, 2018, 3228-3233 3228  
  

www.etasr.com Siddiqui et al.: Reduced Feature Set for Emotion Based Spoken Utterances of Normal and … 
 

Reduced Feature Set for Emotion Based Spoken 
Utterances of Normal and Special Children Using 

Multivariate Analysis and Decision Trees 
 

Maria Andleeb Siddiqui 
Department of Software Engineering  
NED University of Engineering and 

Technology 
Karachi, Pakistan 

mandleeb@neduet.edu.pk 

Syed Abbas Ali  
Department of Computer Science & 

Information Technology 
NED University of Engineering and 

Technology, Karachi, Pakistan 
saaj@neduet.edu.pk 

Najmi Ghani Haider 
Department of Software Engineering  
NED University of Engineering and 

Technology 
Karachi, Pakistan 

najmi@neduet.edu.pk 
 

 

Abstract—The current paper deals with the use of multivariate 
data analysis and decision tree methods in order to reduce the 
feature set for the normal and special children speech in four 
different emotions: anger, happiness, neutral and sadness. Ten 
features were extracted, by an algorithm implemented in a 
previous study to classify the speech emotions of normal and 
special children. In the current study, the best features are 
selected using multivariate analysis: principal component 
analysis (PCA), factor analysis and decision tree. Step by step 
PCA is applied to reduce the feature set according to the 
variables that are collinear. The obtained reduced feature sets 
are applicable to both normal and special children samples. 
Experimental results revealed that PCA yields the feature set 
comprising pitch, intensity, formant, LPCC and rate of 
acceleration. Factor analysis provides three feature sets out of 
which the feature set comprising of Rasta PLP, MFCC, ZCR and 
intensity provides the best result. Decision tree yields a feature set 
comprising energy, pitch and LPCC. 

Keywords-speech emotions; PCA; factor analysis; decision tree; 
features 

I. INTRODUCTION  

Emotion recognition system identifies the emotional state 
from voice [1], therefore it is called speech emotion recognition 
(SER). There are four modules of SER: input, feature 
extraction, feature selection and classification of emotions [2]. 
Prosodic features, particularly pitch, intensity and duration 
were used in early research studies. Currently, LLD’s features 
such as shimmer, jitter, harmonic to noise ratio (HNR) and 
cepstrum have been used extensively [3, 4]. LPCC and MFCC 
were also accompanied in the speech feature set [5]. In [6], 40 
depressed patients and 40 control subjects were used in a study 
for speech feature analysis. Characteristics of depressed 
patients were found using ANOVA analysis and the results 
were linked to Gaussian mixture model (GMM) and support 
vector machine (SVM). Autism spectrum disorder comorbid 
for children (ASD-CC) psychometric properties were evaluated 
and developed in [7]. Confirmatory factor analysis (CFA) is 
used for the factor structure of the Korean version of ASD-CC. 

In [8], ten features were extracted: frequency, pitch, 
intensity, rate of acceleration, formant frequencies, log power, 
log energy, rate of zero passages, Mel frequency cepstrum 
coefficient (MFCC), linear prediction cepstrum coefficient 
(LPCC). The extraction of frequency starts with the speech 
signal loading and the conversion of analog signal into numeric 
data. After loading, maximum and minimum frequency were 
set and fast Fourier transform (FFT) of windowed signal was 
performed as shown in (1). Followed by the cepstrum 
calculation the frequency is extracted as shown in (2).  

 (1 .*            ( ))  ms fft x hamming length x  (1) 

 / 1 1  f fs ms fx      (2) 

where ms1=windowed signal, fft=fast Fourier transform, 
f=frequency, x=input signal, fs=sampling frequency, fx=input 
frequency. 

For pitch extraction, signal acquisition and signal 
processing are the same as in frequency extraction. FFT is 
applied on the processed signal. Discrete Fourier transform 
(DFT) is taken of the FFT signal as in (3). Then the log of FFT 
is calculated. After that the real cepstrum is calculated and it is 
the absolute value of filtered log of DFT as shown in (4). Then 
finally real cepstrum pitch is extracted given in (5).  

  dfty abs fft x      (3) 

 10  dft log dfty      (4) 

  _ 16 : _     rcp real ceps length real ceps   (5) 

(dft=discrete fourier transform, rcp=real cepstrum pitch). 

The magnitude of the DFT signal with log10 is filtered as in 
(6). The conversion of the magnitude into decibels and 
transpose result of decibel gives out intensity as shown in (7).  

    20* 10 1:       M log abs Y length x eps   (6) 
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 2  i mag db M      (7) 

where M=magnitude, Y=filtered signal, x=input signal, 
i=intensity, mag2db=magnitude to decibels. 

Processing of the signal involves the time instant 
calculation as given in (8). The derivative of speed gives the 
velocity in (9). The gradient of velocity by 0.01 yields the 
acceleration in (10). Finally the average rate of acceleration is 
calculated by taking the mean of acceleration. 
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v=diff(x1)     (9) 

acc=gradient(v,0.01)    (10) 

where x1=speed, T=time instant, v=velocity, diff=derivative, 
acc= acceleration. 

For extracting the formant frequency, preprocessing 
involves setting the number of coefficients according to the 
rule of thumb for formant estimation given in (11). After that 
calculation of the linear prediction coefficients is carried out in 
(12). Then the frequencies are calculated using (13). The 
imaginary part of the root gives out formant frequencies.  

2 /1000 ncoeff Fs      (11) 

 a lpc ncoeff      (12) 

  r roots a      (13) 

where ncoeff=number of coefficients, Fs=sampling frequency, 
lpc=linear prediction cepstrum, a=linear prediction cepstrum 
coefficient, r=roots. Preprocessing involves the setting of the 
sampling rate and sampling window size for log power 
extraction. After that the frame size is calculated and 
windowing is applied. Then the average energy is extracted. 
Average power is yielded by dividing the average energy with 
window size as shown in (16). 

_ *   windowsize sampling rate fs    (14) 

 _ .^ 2  Average Energy sum result   (15) 

_ /                   Lp Average Energy windowsize  (16) 

where, fs=sampling frequency, sum=sum of frame size of 
windowed signal, Lp=Log power. 

Preprocessing involves the same procedure as log power 
extraction. Average energy is calculated by applying 
windowing on signal according to window size and frame size, 
given in (17). 

 _ .^ 2  Average Energy sum result   (17) 

Signal acquisition and signal processing are the same as in 
pitch and frequency estimation given in (18). 

     1 2 / 2 /  RZP sum abs sign y sign y windowsize   (18) 

where RZP=rate of zero passages, y1=maximum frequency, 
y2=minimum frequency. 

Preprocessing involves setting and analysis of frame 
duration and frame shift. It is followed by the setting of the pre 
emphasis coefficient alpha=0.97, the number of filter bank 
channels M=20 and lower and upper frequency limits. Then the 
Hertz to Mel- wrapping function is calculated. Application of 
DCT matrix routine and the magnitude of the spectrum are 
calculated in (19). The filter bank is applied to the unique part 
of the magnitude spectrum. Finally the calculation of cepstral 
liftering gives MFCC (20).  
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     @ , 1 0.5* * * 0 : 1 /CL N L L sin pi N L    (20) 

where dctm=secrete cosine transform matrix, N=number of 
coefficients, M=number of filter bank channels, L=length of 
channel, CL= cepstrum lifter.  

Preprocessing involves the estimation exponent of next 
high power according to signal size. Then the number of 
prediction paths ‘p’ is set. Calculation of the number of linear 
prediction of coefficients is carried out. Fourier transform is 
applied on X-lpc according to the number of shifts N as given 
in (21). The logarithm of LPC is taken and then the LPC 
coefficients are converted back to spectra. The number of 
cepstra is then set and the first and second derivative of LPCC 
features are estimated to have the value of coefficients in (22). 

   _ ,   x lpc lpc x p     (21) 

 _ ,   lpcc fft x lpc N     (22) 

where, Lpc=linear prediction coefficients, x=input signal, p= 
prediction paths, FFT= fast Fourier transform, lpcc=linear 
prediction cepstrum coefficients, N= number of shifts. 

After extracting these features, speech emotion recognition 
of normal and special children (SERNSC) is implemented. To 
make the algorithm run efficiently, dimension reduction is a 
valuable approach. The advantage of dimensionality reduction 
is that it helps to discover the grouping of features that for sure 
run the algorithm with improved accuracy [9]. Detection of 
projection subspace basis evaluation is suggested in [10]. For 
deduction it uses generalized hyperbolic mixture (HMMDR) 
fit. This method is well accepted along with discriminant 
analysis, model based classification and clustering analysis. 
Two SDR techniques are demonstrated in [11]. The 
relationship between partial least square (PLS) and principal 
component regression (PCR) is explained. Dimensionality 
reduction by joining features is one of the best strategies 
proposed so far [12]. Sparse partial least square regression 
(SPLSR) is investigated in depth in [13]. It is revealed that the 
recognition rate of SPLSR is up to 79.23% and it is superior 
when compared to other methods used for dimensionality 
reduction. In this paper, feature reduction is presented using 
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