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where the dimensionless variables are: 
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The dimensionless boundary conditions are: 
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S
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y
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The present problem is governed by 5 parameters: the 
buoyancy ratio N, the Lewis number Le, Darcy-modified 
Rayleigh number Ra*, the inclination angle  and the aspect 
ratio A. The average values of Nusselt number evaluated on the 
bottom wall and Sherwood number evaluated on the left side 
wall are given by: 

11
,

0 00 0

A T S
Nu dx Sh dy

A y xy x

       
 (10) 

III. NUMERICAL SOLUTION  

The volume finite method [22] is employed to solve 
numerically the governing equations together with the 
boundary conditions. The computation domain is divided into 
rectangular control volumes with one grid located at the center 
of the control volume that forms a basic cell. The set of 
conservation equations are integrated over the control volumes, 
leading to a balance equation for the fluxes at the interface. The 
iterative process, employed to find the stream function, 
temperature and concentration fields, was repeated until the 
following convergence criterion was satisfied: 

 , ,
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new old
i j i j

i j

new
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i j


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   (11) 

where Φ stands for Ψ, T and S. The subscripts i and j denote 
grid locations in the (x, y) plane. A further decrease of the 
convergence criteria, 10−6, does not cause any significant 
change in the final results. Numerical tests, using various mesh 
sizes, were done for the same conditions in order to determine 
the best compromise between accuracy of the results and 
computer time. A mesh size of 121×61 was adopted. The 
accuracy of the code was checked, modifying the thermal and 
solutal boundary conditions, to reproduce the results reported 
in 20. Good agreement can be seen from Table I with a 
maximum deviation of about 3.4%. 

TABLE I.  VALIDATION OF THE NUMERICAL CODE 

Le 
max Nu Sh 

Present 
work 

[20] 
Present 
work 

[20] 
Present 

work 
[20] 

0.1 11.625 11.706 4.484 4.633 1.209 1.221 
1 9.505 9.609 4.130 4.276 4.840 5.086 
10 9.104 9.171 3.983 4.078 15.870 17.02 

=0, Ra*=200, n=0.3 and various le, in terms of  Max, nu and sh 

IV. RESULTS AND DISCUSSION 

A. Considered Situations 

In present work, the results are displayed in the form of 
stream, iso-thermal and iso-concentration lines to investigate 
the effect of inclination angle (0°≤α≤90°), buoyancy ratio 
(−5≤N≤5) and Lewis number (0.1≤Le≤10) while Darcy-
modified Rayleigh number, aspect ratio and Prandtl number are 
taken as 200, 2 and 0.71 respectively. The rate of heat and mass 
transfer at different conditions in the cavity is measured in 
terms of the average Nusselt and Sherwood numbers. 

B. Flow Structure, Temperature and Concentration Fields, 
and Heat and Mass Transfer Visualization. 

To show the effects of the inclination angle α, isotherms, 
stream functions and iso-concentration lines are presented in 
Figure 2 for Le=10 and N=0.1. For no inclination angle (α=0°) 
four regions of important concentration gradients can be 
observed. Two of these regions are located in the vicinity of the 
upper part of the right wall and the lower part of the left wall 
where the cells exchange important quantity of solute with 
these boundaries. The two other regions are located in the 
vicinity of the upper and the lower central parts of the 
enclosure, in the interface between the cells where the solute 
exchange is by diffusion. For 0°<α<15° the previous regions 
exchange just their positions (the upper becomes lower and 
vice versa). The vortex strength of the fluid in the porous 
medium is lower when α15° and it increases when the angle 
of inclination decreases.  

When α>15° the secondary circulations disappear and the 
vortex strength of the fluid in the porous medium increases 
with the increase of the angle of inclination. The temperature 
field obtained shows the presence of thermal boundary layers 
near the upper and lower walls and parallel to the two other 
walls stratification of the temperature in the core region. The 
two regions of important concentration gradients located in the 
vicinity of the upper and the lower central parts of the 
enclosure disappeared.  
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S dimensionless concentration 
Sh average Sherwood number 
T dimensional temperature, K 
T dimensionless temperature, [= (T-Tl) /(Th-Tl)] 
x,y coordinates system, m 
x, y dimensionless coordinates system, [=x(y) /H] 
 inclination angle, ° 
S solutal expansion coefficient, K-1 
 thermal expansion coefficient, m3.kg-1 
 dimensional stream function, m2.s-1 
 dimensionless stream function 
 density of fluid, kg.m-3 
h higher 
l lower 
max maximum value 
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