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Abstract—This paper proposes frequency speed control of rotary 
travelling wave ultrasonic motor (TWUSM), type Daimler Benz 
AWM90-X motor. The control characteristics of TWUSM are 
complicated, highly nonlinear and varying in time. This can lead 
to deterioration of the performance of conventional controller 
such as proportional integral (PI). In order to achieve high 
control performance of the TWUSM, fuzzy logic controller (FLC) 
has been designed and compared to the conventional PI 
controller. To validate the performance of the proposed FLC, 
simulation of the speed response has been performed and 
analyzed for a varying load. The simulation results show that the 
FLC has smaller settling time, smaller rising time and minimum 
error in steady state. Furthermore, the fuzzy controller provides 
good results for large load variations. The frequency output of 
the controller has been validated with experimental 
measurements of AWM90-X. 

Keywords-nonlinear control; fuzzy logic controller; travelling 
wave ultrasonic motor type Daimler–Benz; AWM90-X 

I. INTRODUCTION  

TWUSMs have structural and operational advantages 
compared to conventional electromagnetic motors, such as 
compact size, lighter weight, very low speed operation, high 
torque, nonmagnetic operation, freedom of constructional 
design, very low inertia, high speed response, possibility of 
electromagnetic noise reduction and miniaturization [1]. 
Moreover, the settling time in ultrasonic motors is very short, 
fast response is one of the most important TWUSM 
advantages, which makes it suitable for applications with fast 
response demands such as robot actuators and auto-focus 
cameras. Several types of ultrasonic motors have been 
suggested and designed in the last 25 years [2]. Their operating 
principle is based on piezoelectric vibrations that convert 
electric energy to mechanical energy in the form of elastic 
vibrations [3]. It consists of two basic parts: the stator with 
piezoelectric ceramics, and the driven part (rotor). Apart from 

the advantages of TWUSM, deriving mathematical model for 
TWUSMs is a difficult task due to their complicated and highly 
nonlinear characteristics. In addition, the dynamic speed 
characteristics of TWUSM are time-varying due to the increase 
in temperature and depend on operating conditions such as 
driving frequency, source voltage and load torque [4, 5]. 

The speed control of TWUSMs is one of the important 
issues under consideration [5-7]. Three kinds of speed control 
strategies exist in the literature. The TWUSM speed can be 
controlled by the driving frequency, the phase difference or the 
voltage amplitude of the two excitation sinusoidal voltage of 
TWUSM. However, aimed at these problems, several 
researchers have opted for the driving frequency of the 
sinusoidal voltage as control variable [6–8]. There is no perfect 
control scheme for TWUSMs. The ultrasonic motor speed 
controllers belong to several conventional and numeric 
controller types. A speed tracking control system using both 
neuro-fuzzy control and direct pulse width modulation for 
TWUSM has been developed in [8]. In the same way, authors 
in [9] used also a fuzzy neural network controller. Authors in 
[4, 10, 11] studied a servo speed control system for traveling-
wave ultrasonic motor [4] and a servo position control for 
TWUSM [10] where fuzzy neural network was the control tool 
[11]. Authors in [12] proposed a position control scheme for 
TWUSMs. Authors in [13] used H∞ strategy to control rotary 
travelling wave ultrasonic motor TWUSM while authors in 
[14] proposed an intelligent PID speed controller of TWUSM. 
In a nutshell, most of developed works for ultrasonic motors 
control focused on a motor of USR60 type. However, the speed 
control for Daimler–Benz AWM90-X motor has rarely been 
explored so far, which motivated us to make this study as a 
continuation of our previous works [15-17]. The main 
contribution of this work consists to the design of a fuzzy logic 
controller to drive the speed of the Daimler–Benz AWM90-X 
motor. The robustness of the proposed controller against load 
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D. The Third Load 3.3Nm 

The motor has been loaded with a big load larger than the 
torque that can be supported by the PI controller. From the 
results given in the Figure 9(c), we note that the FLC can drive, 
similar to the previous cases, the TWUSM to track the 
reference speed. In the range 2.5 3t ms ms  , the motor speed 
decreases under the load effect and then it increases to reach 
the reference speed. Noting that for a large load, greater than 
3.3Nm, the TWUSM under FLC diverges. This phenomenon, 
called pull out phenomenon, has been signaled in the literature 
[24]. It is due especially to the variation of the resonance 
frequency. Finally, FLC is more robust than the PI  controller 
and it presents low error. Therefore, it is well suited to this 
actuator type which can be employed for varying loads.  

 

 
Fig. 9.  Rotor speed, loaded motor a) 1.5Nm, b) 1.6Nm, c) 3.3Nm 

VI. SIMULATION RESULTS AND EXPERIMENTAL DATA 

VALIDATION 

To ensure the good operation of the TWUSM, the motor 
should be driven with the antiresonance frequency to reach the 
maximum of its efficiency [25]. To determine the 
antiresonance frequency of the TWUSM AWM90-X, the stator 
parameters were calculated with finite elemet method (FEM), 
obtained from the recorded admittance curve of the stator. The 
admittance curve of the free-vibrating stator was recorded with 
the impedance analyzer with a step size of 10Hz. Figure 10 
shows the resulting measured curve. From Figure 10, the 
antiresonance frequency is equal to 43.425kHz [25]. 

 

Fig. 10.  Recorded admittance curve of AWM90-X stator 

Regarding the proposed TWUSM model, we can note that 
it was validated in our previous work [17] without control 
speed. In fact, the simulation frequency of the proposed model 
was equal to 43.425kHz which is the same with the one 
obtained in experimental validation [25]. Moreover, to validate 
the proposed controller, the frequency output of the FLC is 
illustrated in Figure 11. Hence, the simulation frequency has 
been found equal to 44.6kHz, which is closer to the 
experimental antiresonance frequency (43.425kHz). This result 
validates the efficiency of the FLC. 

 

Fig. 11.  Frequency output of the FLC 

VII. CONCLUSION 

In this paper, the frequency speed control of the TWUSM, 
type Daimler Benz AWM90-X, has been studied. The design of 
FLC and PI controllers has been presented and discussed. To 
illustrate the efficiency of the proposed controllers to drive the 
TWUSM to track perfectly the reference speed, thorough 
simulations were performed. The obtained results have 
revealed that the FLC controller performs better than the PI 
controller with very good tracking performance, namely low 
rise time, low settling time and high steady state accuracy. 
Likewise, the FLC controller seems more robust that the PI 
controller against load variations. Finally, the frequency output 
of the FLC has been validated with experimental measurements 
of the TWUSM AWM90-X. 
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