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Abstract—The differential GPS (DGPS) technique is one of the 
most popular and comparatively accurate techniques available to 
enhance the positioning accuracy by minimizing most of the 
common errors. However, the ultimate accuracy of the user 
location depends on the remaining non-common errors 
(multipath, receiver clock, and noise), which occur at the points 
of observation and reference. Out of these errors, multipath is the 
most dominant and challenging error to predict and minimize. 
Single frequency C/A code based GPS receivers are popular due 
to their comparatively low cost compared to dual frequency 
(L1/L2) GPS receivers. This paper focuses on evaluating the 
effect of multipath error on single frequency C/A code based GPS 
positioning. For the analysis, 72,000 continuous GPS observations 
with one-second interval under four different multipath 
environments were conducted by utilizing three geodetic GPS 
units. Accordingly, the observations with more than 5cm on the 
2D positional error, created by the effected multipath, were 
always less than 25%. Here, an average of 16% of observations 
exceeded 20cm in 2D positional error. Further, it was noted that 
the presence of multipath introduces significantly higher and 
comparatively lower 3D positional errors on DGPS observations. 
This could be due to the compensation of negative and positive 
effects caused by the multipath and other remaining non-
common mode errors at the reference and user stations. In 
addition, C/A code based single frequency GPS observations were 
significantly influenced by multipath, not only by the close-by 
reflectors but also by the ground surface. The effect of multipath 
was about 50% of the total 3D positional error for the four tested 
multipath environments. 
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I. INTRODUCTION  

Global positioning system (GPS) developed by the US 
Department of Defense, was first planned to have 24 satellites 
in operation. Each of the satellites continuously transmitted two 
high-frequency carrier waves L1 and L2, with frequencies of 
1575.42MHz and 1227.60MHz respectively [1]. C/A-code 
(coarse-acquisition) is for civilian users and P-code (precision) 
for U.S. military or authorized users. The code signals are 
superimposed on the L1 carrier, while L2 carries only the P-
code [2]. Both codes allow a GPS receiver to measure the 
signal propagation time from satellites to the receiver 

instantaneously using the distance from satellites to the 
receiver, (pseudo-range). Pseudo-ranges are then utilized for 
the estimation of GPS receiver position [3]. Basically, there are 
two forms of observations depending on the capability of the 
receivers to process C/A code and L1/L2 carriers, referred to as 
code and carrier range observations respectively [4]. Therefore, 
GPS based positioning accuracy directly depends on the 
accuracies of calculated ranges to at least four satellites [5]. 
Most of the presently available GPS receivers utilize almost all 
the state-of-the-art technical improvements in GPS hardware 
and processing algorithms. However, still these GPS receivers 
suffer from significant positioning errors due to signal 
propagation delays through ionosphere and troposphere, 
satellite and receiver clock errors, bias on ephemeris data, 
multipath, and receiver and measurement noises [6-8]. Hence, 
the standard positioning service (SPS) accuracy widely varies 
with time, place, and most importantly, GPS receiver 
performance [2]. These measurement errors are generally 
classified as either common or non-common mode errors. The 
common errors (ionosphere delay, troposphere delay, satellite 
clock, and bias on ephemeris data) have similar effects on all 
receiver measurements operating in a limited geographic area 
[7]. Non-common mode errors (multipath, receiver, and 
measurement noises) are distinctive and the amount of their 
influence depends on the surrounding obstructions at the 
observation site and the technical specification of receivers [9]. 

Numerous techniques are available to minimize the above-
listed sources of errors from GPS position estimation. A user 
equipped with a dual frequency (L1, L2) GPS receiver can 
estimate the ionospheric group delay and phase advance from 
the measurements themselves, and virtually eliminate the 
ionosphere as a source of error [10, 11]. Besides, many 
different models have been proposed to quantify the effect of 
ionospheric and tropospheric delay on GPS measurements. The 
Klobuchar model is one of the popular empirical models, 
which uses the satellite broadcast parameters to estimate the 
propagation zenith ionospheric delay [12]. There is no dearth of 
tropospheric models, in particular, the Saastamoinen model, 
which was derived based on the gas laws and simplifying 
assumptions regarding changes in pressure, temperature, and 
humidity with altitude [13]. However, none of these models 
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which the multipath effect is the most significant. According to 
the arrangement of the observation site, the possible source of 
multipath error at GPS01 was the reflector and/or the ground 
surface.  

 

 

 

 

 

Fig. 3.  Reflector configuration at GPS 01 station 

At GPS02 and 03, the only possible source was the ground 
surface. A Trimble 5700 receiver was used at GPS03 with a 
Zephyr Geodetic L1/L2 antenna and Trimble Stealth ground 
plane technology, which could reduce most of the multipath 
created from the ground surface. Therefore, the negative 
influence that could be introduced by multipath on DGPS 
corrections generated at GPS03 reference station is assumed to 

be minimum. To evaluate the effect of multipath on C/A code 
based GPS positioning, 2D and 3D positioning accuracies at 
GPS1 and GPS2 were comparatively analyzed by utilizing the 
accurately measured baseline distances with GPS3 reference 
station. 

A. Effect on 2D Positioning  
The multipath effect is analyzed by evaluating the 2D 

positional accuracy of 72,000 observations recorded for 20-
hours with a 1-second interval. Table I presents the number of 
observations as a percentage of total records, within four 
different 2D positional error limits, less than or equal to 5cm, 
greater than 5cm, and greater than or equal to 20cm and 50cm 
(<5cm, >5cm, >20cm, and >50cm). The effect of multipath is 
calculated for both baselines, BL1 (GPS 03 – GPS 01) and BL2 
(GPS 03 – GPS 02), as reported in Table I. 

TABLE I. OBSERVATION PERCENTAGE AT 2D POSITIONAL ERROR 
CAUSED BY MULTIPATH 

Observation 
2D positional error due to multipath 

<5cm >5cm >20cm >50cm 

Day1 
BL1 78.4% 21.6% 16.0% 7.6% 
BL2 80.1% 19.9% 04.1% 1.8% 

Day2 
BL1 79.1% 20.9% 16.1% 6.8% 
BL2 89.9% 10.1% 03.6% 0.5% 

Day3 
BL1 75.4% 24.6% 17.3% 9.3% 
BL2 84.7% 15.3% 3.8% 1.5% 

Day4 
BL1 79.3% 20.7% 06.7% 0.4% 
BL2 84.4% 15.6% 02.6% 0.7% 

 
Observations with the 2D positional error of less than or 

equal to 5cm could be considered as observations that are 
comparatively low affected by multipath. An average of about 
78% and 85% were recorded with minimum multipath error for 
baselines BL1 and BL2 respectively. In addition, an average of 
about 22% and 15% observations were affected by higher 
multipath errors (more than 5cm of 2D positional errors for 
baselines BL1 and BL2 respectively). According to the 
condition of the observation site, the possible source of error 
for BL1 is the multipath at GPS01 created by the reflector 
and/or the ground surface. For BL2 it is the multipath at GPS02 
created by the ground surface. Therefore, the percentage 
difference between BL1 and BL2 represents the additional 
multipath introduced by the artificial reflector separately from 
the ground. Accordingly, the artificial reflectors introduced 
both lower and higher than 5cm multipath errors on average of 
7%. The highest difference percentage was observed for 2D 
positional error limit more than or equal to 20cm. When 
compared to the observations without reflector at GPS 01, the 
artificially-generated multipath diminished. However, for 2D 
positional error limit of more than or equal to 20cm, the 
number of observations were improved by 9.3%, 9.4%, and 
10.6% over the observations without a reflector for concrete, 
wood, and metal, reflectors respectively. This confirms that the 
amount of multipath effect changes with the material of the 
reflector and is significant for higher 2D positional errors of 
greater than 20cm on C/A code based GPS observations. 

B. Effect on 3D Positioning 
Further analysis was conducted to investigate the effect of 

the multipath error on 3D positioning with single frequency 
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analyzing the 2D and 3D positioning accuracies after DGPS 
processing. Based on the analysis, averages of 22% and 15% of 
the tested 72,000 observations were recorded with higher 
multipath errors of more than 5cm on 2D positioning for all the 
tested multipath conditions of baselines BL1 and BL2 
respectively. It has observed that the magnitude of multipath 
error changed with the material of the reflector and was 
significant for higher 2D positional errors, greater than 20cm 
on C/A code based GPS observations. Further, it was noted that 
the presence of multipath introduces not only significantly 
higher positional errors, but also comparatively lower errors on 
C/A code single frequency GPS observations. Compensation of 
negative and positive errors caused by the multipath and other 
remaining non-common mode of errors at the reference and 
user stations could be the main reason for the observed 
irregular variation. Multipath has a significant influence on 
single frequency C/A code based GPS observations, and for the 
tested observations, the contribution was about 50% of total 3D 
positional errors of single frequency C/A code based GPS 
observations. 
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