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Abstract—In this paper, performance of a device-to-device (D2D) 
communication system is analyzed over double-generalized 
Gamma (dGG) fading channels. The dGG is a generic 
distribution for modeling double-scattering fading conditions. 
Co-channel interference (CCI) caused by various wireless devices 
in the system is also considered. The CCI fading channel is 
assumed to be Nakagami distributed. Analytical expressions for 
important statistical metrics, i.e. probability density function 
(PDF) and cumulative distribution function (CDF) of signal-to-
interference ratio (SIR), are presented. Based on these statistical 
parameters, expressions for the outage probability, channel 
capacity and symbol error rate (SER) of the D2D communication 
system are presented. The performance of D2D system is then 
discussed and analyzed with the help of numerical results with 
arbitrary channel fading, path-loss and interference conditions. 
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I. INTRODUCTION 

The increased growth of smart phones and tablets having 
many multimedia applications and large file sharing are the 
motivations for the rapid development in cellular 
communication systems. These advancements in smart devices 
with the bandwidth consuming applications have led to 
increase in demand for higher data rates and this demand is 
projected to grow exponentially in the future. One of the 
promising solutions to this problem is device-to-device (D2D) 
communication system [1-3]. D2D communication system is 
one of the standards of the 5th generation (5G) cellular 
communication system. D2D communication is defined as the 
high data rate direct communication between two users’ 
equipment with high spectral efficiency, without passing 
through cellular infrastructures [4-6]. Presence of large number 
of various types of wireless devices as well as D2D pairs 
sharing a cellular communication spectrum can cause unwanted 
and unintentional co-channel interference (CCI) in the absence 
of proper coordination. Therefore, CCI should be considered 
while analyzing the performance of D2D communication 
systems [7-8]. Outage probability, channel capacity and 
symbol-error rate (SER) are well-known parameters used for 
the performance analysis of the wireless communication 
systems. In [9], authors analyzed outage probability of D2D 

communication systems over Rayleigh fading channels. The 
outage probability of D2D communication system under 
Suzuki fading in presence of co-channel interference is studied 
in [10]. Channel capacity of a D2D system, over a Rician faded 
channel, is analyzed in [11]. Authors in [12], studied D2D 
channel capacity over a correlated Rayleigh fading channel in 
an interference limited environment. In [13], authors presented 
a study of SER of a multicarrier D2D video transmission over 
an independent Rayleigh fading channel.  

In this paper, outage probability, channel capacity and SER 
of a D2D communication system are investigated. A D2D pair 
is assumed to be affected by various co-channel interferers in 
the system. The CCI may arise from any wireless or D2D 
communication device in the system when proper coordination 
is lost or interrupted. The fading channel for the desired D2D 
system is considered to be double-generalized gamma (dGG). 
The dGG is a versatile and mathematically tractable fading 
distribution. The dGG variable is a product of two generalized-
Gamma variables [14]. The dGG includes various distributions 
like Gamma-Gamma, double-Nakagami, double-Weibull, 
Weibull-Gamma, and double-Rayleigh. It can also model 
distributions like, generalized-Gamma and Nakagami/Rayleigh 
-lognormal. In cellular communication systems, signals are 
often scattered and re-scattered around transmitter’s and 
receiver’s local surroundings. This double-scattering channel 
condition is observed when the transmitter and receiver devices 
are moving. The double-scattering conditions can be effectively 
modeled with the help of dGG distribution [15]. The 
propagation channel distribution for the CCI is assumed to be 
Nakagami. Which is a well-known versatile distribution often 
used in the literature to model various channel fading 
conditions. The rest of this paper is organized as follows. 
Section II presents the D2D system model and the expressions 
for the outage probability, channel capacity and SER. The 
numerical results are discussed in Section III and Section IV 
concludes the paper. 

II. SYSTEM MODEL 

D2D communication network having N interferers is shown 
in Figure 1. In this work, a co-channel interferer is assumed to 
be any wireless node or any D2D communication device. A 
D2D pair is considered here for the performance analysis. This 
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With the help of (4), the cumulative distribution function 
(CDF) of SIR of the D2D system is [22] 
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SER expression of the D2D communication system is now 
presented. M-ary phase-shift keying (M-PSK) based 
modulation scheme is incorporated in this work. With the help 
of [22-24] the SER expression is 
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Expressions of the outage probability, capacity and SER are 
valid for arbitrary parameters of dGG and Nakagami 
distribution, path-loss and co-channel interference. 

III. NUMERICAL ANALYSIS AND RESULTS 

In this Section numerical results are presented and 
discussed. For analysis simplicity the reference distances c0 and 
d0 are assumed to be 1m. The SIR threshold R is set at 10dBm. 
Outage performance of D2D system with varying values of two 
of shape parameters i.e. δ1 and δ2 is shown in Figure 2. 
Transmit power PD, path-loss exponent a, and shape parameter 
β are fixed at 20dBm, 3 and 2, respectively. Power PI, path-loss 
exponent b, the number of interferers N, the distance between 
the i-th interferer and the receiver of the desired D2D pair d, 
and the fading parameter m are assumed to be 10dBm, 3.5, 5, 
50m and 2, respectively. It is observed that the fading 
conditions of the D2D system improve with the increase in the 
values of fading parameters, i.e. δ1 and δ2. A degradation in the 
outage performance of D2D system is also observed for the 
similar channel fading conditions of the desired D2D pair when 
the value of c is increased. As the desired D2D pair’s 
transmitter and receiver move away from each other, i.e. the 
value of c increases, outage performance of the D2D system 
degrades because of the power decreasing of the desired D2D 
signal caused by the path-loss effects. 

 
Fig. 2.  Outage performance with varying values of two of shape 
parameters. 

The outage performance comparison of the D2D 
communication system for various values of dGG fading 
parameter, β and the path-loss exponent a is shown in Figure 3. 
The values for the desired signal parameters PD, δ1, δ2 and c are 
fixed at 20dBm, 1.5, 2 and 25m, respectively. The values of 
interference parameters PI, b, N, d, m are assumed to be 
10dBm, 4, 5, 60m and 1, respectively. It is observed that the 
outage performance of the D2D system is improved for the 
higher values of dGG shape parameter β of the desired signal. 
This happens because of the improved fading conditions with 
the increase in the values of the desired signal’s shape 
parameter. Moreover, for the same values of fading shape 
parameter of the desired signal, outage performance 
deteriorates with increase in path-loss exponent a because of 
the worsened SIR condition of the system when the value of a 
is increased. 
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Fig. 3.  Outage performance with varying values of fading parameter β. 

Outage performance of the D2D system for various values 
of path-loss exponent of the interference signal b is shown in 
Figure 4. For the desired signal the values of PD, a, β, δ1 and δ2 
are set to be 20dBm, 2.5, 2, 2 and 1, respectively. For the 
interference signals PI, m, N and d are assumed to be 10dBm, 2, 
5 and 50m, respectively. It is noticed that the outage 
performance is better for the higher values of b because of the 
weakening of the interference signals at the desired D2D pair’s 
receiver when the value of the CCI path-loss exponent b is 
increased. Hence, an improved outage performance of the D2D 
system is observed. It is also observed that as the desired D2D 
pair’s devices move away from each other, the value of c 
increases and outage performance of the D2D system 
deteriorates because of the weakening of the desired D2D 
signal caused by the path-loss effects. 

 
Fig. 4.  Outage performance with various values of path-loss exponent b 

Figure 5 illustrates the outage performance with various 
values of the interference fading shape parameter m and 
distance d. The values of PD, PI, a, β, δ1, δ2, b, N and c are fixed 
at 20dBm, 10dBm, 2.5, 2, 1.5,3, 3 and 25m, respectively. It is 
observed that the system outage performance is almost 
insensitive to the interference fading conditions. Moreover, for 
the same value of m it is observed that the outage performance 
of the system improves with increasing values of the distance 
d, because as the interferers move away from the desired D2D 
pair’s receiver the interference signal strength weakens due to 
path-loss effects. 

Channel capacity performance of D2D communication 
system with varying values of N and the path-loss exponent a is 
shown in Figure 6. The values of PD, PI, m, β, δ1, δ2, b, c and d 
are set to be 20dBm, 10dBm, 2, 1, 1, 2, 3, 30m and 60m, 

respectively. It is clear that the channel capacity performance 
of the system is better when the number of interferers N is 
decreased. It is also observed that as the path-loss exponent 
value of the desired signal is increased, the capacity 
performance of the system degrades due to the weakening of 
the desired signal strength due to path-loss effects. 

 
Fig. 5.  Outage performance with various values of the shape parameter of 
CCI 

 

Fig. 6.  Channel capacity performance of D2D communication system for 
various N 

Figure 7 shows the channel capacity performance of the 
D2D system for different values of distances d and c. The 
values of PD, PI, a, b, m, β, δ1, δ2 and N are assumed to be 
20dBm, 10dBm, 3, 3.3, 2, 1, 1, 2 and 5, respectively. it is 
observed that the channel capacity is improved for higher 
values of the distance d because of the improvement of the SIR 
conditions due to weakening of the interference signals at the 
desired D2D pair’s receiver.  

 

Fig. 7.  Capacity performance of D2D communication system with varying 
distance d 
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SER performance of 8-PSK scheme with various values of 
number of interference signals is shown in Figure 8. The values 
of PD, PI, β, δ1, δ2, m, a, c and d are considered to be 20dBm, 
10dBm, 1, 2, 3, 2, 3.7, 20m and 60m respectively. The SER 
performance improves when the number of interferers is 
reduced. Moreover, for the same number of interferers, SER 
performance improves with an increase in the values of 
interferers’ path-loss exponent b. 

 

Fig. 8.  SER performance with various values of number of CCIs  

IV. CONCLUSION 

In this paper, the performance of a D2D communication 
system over a dGG faded channel is analyzed. The dGG 
distribution is a general distribution that includes all others that 
are used to model double-scattering which occur in wireless 
communication systems. Effects of co-channel interference 
caused by various wireless devices in the system are included. 
Expressions of the PDF and CDF of the SIR of the D2D system 
are presented. Based on the PDF of the SIR, expressions of the 
performance metrics like outage probability, channel capacity 
and SER are presented. Based on these expressions, numerical 
results are presented to discuss the performance of the D2D 
system under varying interference, path-loss and channel 
fading conditions. It is observed that the path-loss significantly 
affects the performance of the D2D communication system. 
Moreover, co-channel interference, regardless of being affected 
by the channel fading and path-loss conditions, manages to 
affect the performance of the D2D system. 
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