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Abstract—Model predictive control (MPC) in system control 
industry overrides the challenges of conventional controllers in 
controlling complex systems. However, for efficient control, it is 
essential to find the best combination of parameter values. In this 
paper, we present the implementation of a multivariable dynamic 
matrix control (DMC) algorithm. An industrial system consisting 
of a DC motor, coupled to a mechanical load, the assembly 
associated with an electronic speed variator was considered to 
test the implemented DMC controller. DMC’s tuning parameter 
analysis on the manipulated inputs and their variations on the 
controlled outputs was performed. Results guarantee that 
efficient control was presented. 

Keywords-model predictive control (MPC); dynamic matrix 
control (DMC); tuning parameters; DC motor control 

I. INTRODUCTION 

Advances in the system control industry have led engineers 
to develop robust controllers with higher performance than 
conventional ones (LQR, IMC, PID) [1-3]. DMC is a subset of 
the MPC algorithms that refers to a class of computer control 
algorithms that use an explicit process model to predict the 
future response of a system [4, 5]. The ability of this controller 
to drive multivariable, non-linear and constrained systems, and 
its ease of tuning gives it a prominent place in industrial 
processes [6-9]. However, the best combination of controller 
parameter values that ensures efficient tuning has often been 
very difficult to find [8, 10-12] because of the effect of each of 
these parameters on the controller's control signals and system 
outputs [9, 10]. In this paper, in addition to the simulation, we 
propose a DMC’s tuning parameter analysis approach for 
efficient tuning. Figure 1 presents the principle of the moving 
horizon of [13], which is at the heart of any MPC algorithm.  

II. DMC ALGORITHM  

DMC [14] is part of the first generation of MPC, consisting 
of algorithms that provide a systematic means of controlling 

systems more efficiently while count multivariable cases, for 
which the step responses of the system are used as a predictive 
model [4, 15]. For a given system, let the value of step 
response at each sample time be   ,2,1 ,  iiTaai and n 
the length of the horizon of the system model, then 

 Tnaaa 1  is called the predictive model of the system. 
Choosing the length of the control horizon as m and the length 
of optimal horizon as p, the dynamic matrix of DMC can be 
written according to (1). 
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For a multiple input–multiple output (MIMO) system with 
nu inputs and ny outputs, any input-output i-j pair can be 
represented by a matrix Aij of coefficients ia in every way 
similar to (1) so that the complete system is finally represented 
by a MIMO dynamic matrix of control Aij composed of 
elementary matrices according to (2): 

 
Fig. 1.  Principle of the moving horizon of model predictive control. 
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At time k, assume the control input increment is  kum . 
By using dynamic matrix A, it can be obtained that 

     kuAkyky mpopm  ~~ , where  ky pm
~  represents the 

predictive outputs at future under the control of increment 
 kum , and  ky po

~  the predictive outputs at future when 

 kum =0. For DMC, the vector  ky po
~  can be obtained by 

shifting the predictive vector output at the last time instant 
ahead one step. The online optimization problem of the DMC 
controller without constraints can be formulated according to: 

        22

21

~ 
WmWpmp kukykkJMin    (3) 

where J is the cost function to minimize compared to the 
control law  kum ,  kp  is the reference at time k, W1 and 

W2 are the weight matrices of output errors and control input 
increments respectively. 

Authors in [16] point out that the DMC is a least-squares 
optimization problem with a quadratic performance objective 
and penalty on manipulated variable variations. Thus, the 
problem of (3) can be written in the form of (4): 
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where  1ke  represent the predicted future errors between 
the predicted outputs and the practical outputs. 

By solving the optimization problem (3), DMC controller 
can obtain the solution vector. The details of the derivation of 
(4) to search the MIMO optimal control law of DMC can be 
found in [16, 17], where the solution (5) is found. 
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It should be noted that only the first element of the control 
law of (5)  ku  is sent to the plant. Then, the vector of the 
future system outputs predicted by the predictive model is 
written according to (6): 

     kuakyky nn 
01

~~    (6) 

Since there are always model errors or unknown 
disturbances for practical applications, the DMC will adjust the 
predicted outputs of (6) based on the practical outputs  1ky . 
The error vector between the predicted outputs and the 
practical outputs is written according to (7): 

( ) ( ) ( )11 1 1e k y k y k k+ = + - +   (7) 

Choosing the adjustment coefficient vector h, the adjusted 
predictive vector is written according to (8): 

( ) ( ) ( )
1

1 h 1
cor n
y k y k e k+ = - +    (8) 

At time k+1, the whole procedure mentioned above is 
repeated. Figure 2 presents the diagram of DMC's general 
principle. Figure 3 presents the key building steps of the 
MIMO DMC algorithm without constraints. 
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Fig. 2.  Block diagram of DMC's general principle. 
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Fig. 3.  Flowchart of MIMO DMC algorithm without constraints. 

III. SYSTEM MODEL  

To test our DMC controller algorithm, the DC motor 
system of [18] was considered. In this system, the separately 
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excited DC motor system drives a load and the assembly is 
coupled to an electronic variator speed drive. Previously used 
models of the DC motor to test control algorithms [19-24] were 
unrealistic and limited to electromechanical models. In the 
model of [18], the electromechanical model is associated with 
an electronic speed variator, consisting of a simple chopper 
which allows the whole system to function in the first quadrant 
(Q1) of the couple-speed plane. The principle of operation of 
the whole system is illustrated in Figure 4. The system 
parameter values taken into account in simulations are given in 
Table I. 

 
Fig. 4.  Operating principle of the system. 

TABLE I.  DESIGN SPECIFICATIONS OF THE DC MOTOR SYSTEM 

Symbol System parameter Value 
Uα

 
Supply voltage 24V 

Rα

 
Armature circuit resistance 2 

Lα

 
Armature circuit inductance 0.5H 

Ke

 
Voltage constant 0.1Vs/rad 

km

 
Torque constant 0.1Nm/A 

kf

 
Viscous friction 0.2Nms 

J Total moment of inertia 0.02kgm2 
 

The discrete average state model of the system is given by 
(9) with a sampling step of T=0.1 s: 

( )
( )

( )
( )

( )
( )

( )
( )

1 1

2 2

1 1

2 2

0 3656 0 2516 2 38821

0 0101 0 6676 3 98301

1 0

0 1

. . .

. . .

x k u k

x k u k

y k x k

y k x k

ìé ù é ùé ù é ùï -+ïê ú ê úê ú ê úï = +ïê ú ê úê ú ê úï -+ê ú ê úï ê ú ê úï ë û ë ûë û ë ûíé ù é ùé ùïïê ú ê úê úï =ïê ú ê úê úïê ú ê úê úï ë ûë û ë ûïî

 (9) 

It is then a MIMO 2×2 linear time invariant (LTI) state 
space model of the DC motor system, where the manipulated 
inputs (u1) and (u2) are respectively the load-resisting torque (Tr) 
and the duty cycle of the electronic speed converter (D). The 
controlled outputs (y1) and (y2) are respectively the armature 
current (i) and the motor angular speed (). The problem is to 
use the duty cycle of the chopper and the resistive torque of the 
load to control the rotational speed and the induced current of 
the motor.  

IV. ANALYSIS OF DMC TUNING PARAMETERS  

The MIMO 2×2 DMC controller program presented in this 
paper has been developed in MATLAB with simulation time of 
6s. In this program, the references of the induced current and 
the angular speed of the motor are respectively 10A and 

60rad/s. The effects of the DMC tuning parameters are 
analyzed on the manipulated inputs and their variations, and on 
the controlled outputs of the plant.  

A. Effect of Prediction Horizon (p) 

Figure 5 shows the DMC simulation results obtained at 
different values of prediction horizon while keeping the other 
parameters constant according to Table II. We find that the 
controlled outputs of the plant (Figures 5(a) and 5(b)) are faster 
for the lower values of p [2]. However, large control actions 
(Figures 5(c)-5(f)) are required. This makes it possible to 
compensate for the uncertainties of the model of our system. 
Thus, the prediction horizon must be consistent with the 
response time of the process [16]. 

TABLE II.  EFFECT OF PREDICTION HORIZON (p). 

Parameter Value 
Model horizon (n) 60 

Prediction horizon (p) 3, 6, 10 
Control horizon (m) 1 

Error weight matrix (W1) 1 
Control weight matrix (W2) 0 

 

 
Fig. 5.  Effect of prediction horizon p: (a) and (b) controlled outputs, (c) 
and (d) manipulated inputs, (e) and f) variations of manipulated inputs. 

B. Effet of Control Horizon (m) 

Figure 6 shows the DMC simulation results obtained at 
different values of control horizon m while keeping the other 
parameters constant according to Table III.  

TABLE III.  EFFECT OF CONTROL HORIZON (m). 

Parameter Value 
Model horizon (n) 60 

Prediction horizon (p) 3 
Control horizon (m) 1, 2 

Error weight matrix (W1) 1 
Control weight matrix (W2) 0 

 
We find that the controlled outputs of the plant (Figures 

6(a) and (b)) are slow for the low values of control horizon 
(m=1), with control actions (Figures 6(c)-6(f)) soft and 
progressive, while m=2 produces fast responses but with raw 
control actions. The controller becomes more sensitive to 
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external noise for large values of the control horizon. Thus, the 
large values of the control horizon are not recommended for 
our system. 

 

 
Fig. 6.  Effect of control horizon m: (a) and (b) controlled outputs, (c) and 
(d) manipulated inputs, (e) and (f) variations of manipulated inputs. 

C. Effect of Model Horizon (n) 

Figure 7 shows the DMC simulation results obtained at 
different values of model horizon while keeping the other 
parameters constant according to Table IV. We find that the 
controlled outputs (Figures 7(a) and 8(b)), the manipulated 
inputs (Figures 7(c) and 7(d)) and the manipulated input 
variations (Figures 7(e) and (f)) of the system are partially 
unstable for n=20 and n=40. However, they become perfectly 
stable for n=60. Thus, the model horizon must be chosen such 
that the dynamics of the system are sufficiently captured by the 
controller. In general, large model horizons are recommended 
[25, 26]. 

TABLE IV.  EFFECT OF MODEL HORIZON (n). 

Parameter Value 
Model horizon (n) 20, 40, 60 

Prediction horizon (p) 3 
Control horizon (m) 1 

Error weight matrix (W1) 1 
Control weight matrix (W2) 0 

 

D. Effect of Error Weight Matrix W1 and Control Weight 
Matrix W2 

Figure 8 shows the DMC simulation results obtained at 
different values of the control weight matrix when the weight 
matrix of the error is set to W1=1. The other parameters stay 
constant according to Table V. We find that the responses of 
the system (Figure 8(a) and 8(b)) are faster for the lower values 
of W2 with progressive control signals (Figures 8(c) and 8(d)). 
However, there is a lot of contact on control variations (Figures 
8(e) and 8(f)). Thus, error and control weight matrices are the 
most important DMC parameters and must be used to control 
the rise time of responses, and to produce progressive 
responses to control variations [10, 16]. 

 
Fig. 7.  Effect of model horizon n: (a) and (b) controlled outputs, (c) and 
(d) manipulated inputs, (e) and (f) variations of manipulated inputs. 

TABLE V.  EFFECT OF ERROR WEIGHT MATRIX (W2). 

Parameter Value 
Model horizon (n) 60 

Prediction horizon (p) 3 
Control horizon (m) 1 

Error weight matrix (W1) 1 
Control weight matrix (W2) 1, 8, 15 

 

 
Fig. 8.  Effect of error weight matrix W1 and control weight matrix W2: (a) 
and (b) controlled outputs, (c) and (d) manipulated inputs, (e) and (f) 
variations of manipulated inputs. 

V. DMC CONTROLLER RESULTS IN RESPONSE TO AN 

EFFICIENT TUNING 

From the previous analysis of the effects of the DMC's 
parameters, a set of parameter values that guarantees efficient 
tuning of the implemented DMC controller is proposed (Table 
VI). The simulation results of the MIMO DMC in response to 
this setting are shown in Figure 9. The results of Figures 9(a) 
and 9(b) show that the controlled outputs follow their 
respective setpoints, while the manipulated inputs (Figures 9(c) 
and 9(d)) and their variations (Figures 9(e) and 9(f)) provide 
smooth and progressive control actions. Thus, for our system, 
the prediction horizon must be consistent with the response 
time of the process [16]. 
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TABLE VI.  OPTIMAL VALUES OF THE DMC PARAMETERS. 

Parameter Value 
Model horizon (n) 60 

Prediction horizon (p) 3 
Control horizon (m) 1 

Error weight matrix (W1) 1 
Control weight matrix (W2) 0 

 

 
Fig. 9.  MIMO DMC Controller results for an efficient tuning: (a) and (b) 
controlled outputs, (c) and (d) manipulated inputs, (e) and (f) variations of 
manipulated inputs. 

VI. CONCLUSIONS 

In this paper, MIMO DMC algorithm applied to control 
speed and current of a DC motor system has been implemented. 
An approach to analyze the effect of each tuning parameter and 
its variations on manipulated inputs and on controlled outputs 
has been presented. Obtained results showed that the 
combination of the values of DMC tuning parameters such as 
prediction horizon (p), control horizon (m), model horizon (n), 
error and control weight matrices (W1) and (W2), which 
guarantees efficient control can be found through an individual 
and systematic analysis of the influence of each of these 
parameters on the outputs of the controller and the system. In 
this way, the MIMO DMC controller algorithm drives the 
outputs of the plant to their desired setpoints.  
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