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Abstract—In this paper, the modeling of complex systems using 

deep Elman neural network architecture is improved. The 

emphasis is to retrieve better deep Elman structure that emulates 

perfectly such dynamic systems. To achieve this goal, sigmoid 

activation functions in the hidden and output layer nodes are 

chosen and data files on considered systems for modeling and 

validation steps are given. Simulation results prove the ability 

and the efficiency of a deep Elman neural network with two 

hidden layers in this task. 
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I. INTRODUCTION  

Recently, deep neural networks (including recurrent 
networks) have been successfully applied in several areas [1]: 
modeling and control of complex systems, fault detection, text 
understanding [2, 3], speech recognition [4, 5] and computer 
vision [6, 7]. The advantage of deep learning is reflected on the 
modeling of high-level abstractions from the data by its 
architecture which is consisted of several non-linear learning 
layers. Each layer replies to several levels of nonlinear 
abstraction. [8]. In [9], authors used recurrent neural networks 
with long-term memory units (LSTMs) to find a solution to the 
vanishing gradient problem observed in simple recurrent neural 
networks (RNNs) [9-10]. Authors in [11] used the pre-training 
and fine-tuning steps to ensure the effective training of deep 
learning. Deep learning has a significant success in big data 
since it can recover valuable information from complex 
processes [12]. In [13], authors have described a combination 
between deep learning and reinforcement learning for the 
prediction and control of intelligent laser welding. The 
effectiveness of using deep Elman RNN for modeling complex 
systems was demonstrated in [14]. In order to improve the 
performance of deep learning with multiplayer Perceptron 
(MLP), a new technique was used that requires a combination 
of adaptive learning rate and Laplacian score concept to vary 
the weights. In [15], authors proposed a new method for 
automatic modulation classification (AMC) based on 
unsupervised feed-forward deep learning. The performance of 
this approach was compared to conventional AMC techniques. 
In [16], authors used the application of end-to-end deep 
learning to solve the classification problem of speech emotion 
recognition. They showed the limitations and benefits of these 

architectures in speech recognition. In [17], authors used deep 
Elman RNN (ERNN) for acoustic modeling. They compared 
the performance of this technique with other RNN architectures 
like LSTM, GRU, and simplified LSTM [18-20]. In [21], 
authors developed two novel deep RNN models with LSTM 
units to predict building electricity consumption. In [22], 
authors proposed a new learning algorithm based on simplified 
convolutional neural network to achieve visual tracking with 
adaptive filtering of particles. In [23], authors used 
convolutional deep learning neural networks to detect and 
diagnose plant diseases from leaves images of healthy and 
diseased plants. In [24], authors exploited deep learning to 
solve the problem of large data analysis which is found in 
several areas. In [25], authors proposed the use of a new 
method based on deep belief networks and multiple models 
(DBNs-MMs) to detect faults of complex systems. The novelty 
in this paper is the use of a deep neural network that improves 
modeling systems tasks. In fact, comparing to results given in 
[26], an Elman neural network with two hidden layers gives 
more accuracy when modeling complex systems.  

II. ELMAN NEURAL NETWORK 

The Elman network is a type of recurrent network [27]. It 
has been applied in many areas such as dynamic system 
identification [28] and financial prediction [29]. In [27], a 
simple recurrent neural network was proposed: the input and 
output units are in contact with the external environment, in 
contrast to the context and hidden units. This network is 
characterized by context units that are used to save the previous 
hidden unit activations. Hidden unit activations at time k are 
returned to the context units and stored for the next training 
step. The Elman network is named partially recurrent network 
because the feed forward connections are modifiable and the 
recurrent connections are fixed. To train this kind of neural 
network, the back propagation algorithm can then be used and 
the hidden units activation functions can be linear or non-linear 
[17, 27, 30]. Figure 1 represents an Elman neural network 
architecture. The l-th input unit to the network is represented 
by 𝑉𝐸𝑙(𝑘) and the m-th network output unit by 𝑛𝑒𝑡𝑜𝑚(𝑘). The 
total input to the i-th first hidden layer unit is denoted as 

𝑛𝑒𝑡𝑖
1(k). The output of the i-th first hidden layer unit is denoted 

as 𝑛𝑒𝑡𝑖
11(k). The output of the j-th context layer unit is 𝑉𝑗

𝑐(𝑘). 
The total input to the ii-th second hidden layer unit is denoted 
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as 𝑛𝑒𝑡𝑖𝑖
2(𝑘). The output of the ii-th second hidden layer unit is 

denoted as 𝑛𝑒𝑡𝑖𝑖
22(𝑘). The output of the jj-th second context 

layer unit is 𝑉𝑗𝑗
𝑐1(𝑘). The total input to the i..i-th (n-1-th) hidden 

layer unit is denoted as 𝑛𝑒𝑡𝑖..𝑖
𝑛−1(𝑘).The output of the i..i-th (n-

1-th) hidden layer unit is denoted as 𝑛𝑒𝑡𝑖..𝑖
(𝑛−1)(𝑛−1)(𝑘) . The 

output of the j..j-th (n-1-th) context layer unit is 𝑉𝑗..𝑗
𝑐𝑛−1(𝑘). The 

total input to the i..ii-th (n-th) hidden layer unit is denoted as 
𝑛𝑒𝑡𝑖..𝑖𝑖

𝑛 (𝑘). The output of the i..ii-th (n-th) hidden layer unit is 
denoted as 𝑛𝑒𝑡𝑖..𝑖𝑖

𝑛𝑛 (𝑘). The output of the j..jj-th (n-th) context 

layer unit is 𝑉𝑗..𝑗𝑗
𝑐𝑛 (𝑘). The total input to the m-th output layer 

unit is denoted as 𝑛𝑒𝑡𝑚
𝑠 (𝑘) . 𝑤𝑗,𝑖

𝑐 (. )  , 𝑤𝑙,𝑖
𝑉𝐸(. )  , 𝑤𝑖..𝑖𝑖,𝑚

𝑛𝑒𝑡𝑜 (. ) , 

𝑤𝑖,𝑖𝑖
𝑛𝑒𝑡2(. ) , 𝑤𝑗𝑗,𝑖𝑖

𝑐1 (. ), 𝑤𝑖..𝑖,𝑖..𝑖𝑖
𝑛𝑒𝑡𝑛 (. ) , 𝑤𝑗..𝑗𝑗,𝑖..𝑖𝑖

𝑐𝑛 (. ) are the weights of 

the links, respectively between the first context layer and the 
first hidden layer, the input layer and the first hidden layer, the 
i..ii-th (n-th) hidden layer and the output layer, the first hidden 
layer and the second hidden layer, the second context layer and 
the second hidden layer, the (n-1)-th hidden layer and the n-th 
hidden layer and the n-th context layer and the n-th hidden 
layer. 

 

 

Fig. 1.  Elman neural network architecture. 

III. ELMAN NEURAL NETWORK LEARNING STEP 

The training of the Elman neural network to emulate direct 
dynamics of a system amounts to minimize the squared error 
criterion defined as: 

2
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where VS(k) is the desired output vector.  

In the training step the back propagation algorithm is used 
to adjust the Elman neural network connection weights, in 
order to emulate the dynamics of a system. In the case of many 
hidden layers, the Elman neural network is governed by the 
following equations: 
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where , ,c h VEn n n ,
1 1
,h cn n , 

1nhn
−

, ,
n nh cn n  represent the 

number of units respectively in the first context layer, the first 
hidden layer, the input layer, the second hidden layer, the 
second context layer , the (n-1)th hidden layer, the n-th hidden 
layer and the n-th context layer.  

The squared error at the network output is defined as in (1). 
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In (13) 
s
mnet

f denotes the derivative of f representing 
s

mnet . 

The general weight modification in the gradient descent 
method is: 
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 Where: 

• The weight adjustment between the output and the n-th 
hidden layer are: 
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• The weights adjustment between the first hidden layer and 
the input layer are: 
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• The weights adjustment between the first hidden and the 
context layers are:  
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• The weights adjustment between the first hidden layer and 
the second hidden layer are:  
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• The weights adjustment between the second hidden and the 
context layers are:  
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• The weights adjustment between the n-th hidden and 
context layers are: 
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• The weights adjustment between the n-th hidden layer and 
the (n-1-th) hidden layer are:  
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IV. CONSIDERED SYSTEMS 

Complex systems are generally multi-variable, described by 
non-linearity, characterized by uncertainties and subject to 
disturbances [31]. The goal of modeling a complex system 
consists of constructing a concise and efficient neural Elman 
structure to emulate the dynamics of a system [32, 33]. At first 
we consider a single input and a single output (SISO) system 
with a non-linear function f (.), as in Figure 2. 

 

 

Fig. 2.  A SISO sytem 

Here, 

sin( ) ( )= =y u f u     (28) 

The complex system to be modeled is a greenhouse with 
multi-inputs, multi-outputs (MIMO), disturbances and 
uncertainty. It is composed of sensors to measure internal and 
external climate. The greenhouse outputs are defined by the 
internal climate (“internal temperature and internal 
hygrometry”). It is equipped with actuators to control the 
internal climate, consisted with a sliding shutter with an 
opening between 0° and 35°, a heater which operating in on/off 
mode with a power of 5kW, a sprayer and a curtain with a 
length varying between 0 and 3m. The considered greenhouse 
is a classical one, it is characterized by physical quantities that 
constitute its functioning [34, 35]:  

• Measurable but not controllable input: Te (external 
temperature (in ºC), He (external hygrometry in %), Rg 
(global radiant in W/m2), Vv (wind speed in km/h). 

• Measurable and controllable input: Ch (heating input 
varying between 0 and 1), Ov (sliding shutter in degrees), 
Br (sprayer varying between 0 and 1), Om (curtain in m). 

• Outputs: Ti (internal temperature in ºC), Hi (internal 
hygrometry in %). 

 

 

Fig. 3.  Greenhouse functional bloc diagram. 

V. SIMULATION RESULTS 

Three neural network structures are considered for both 
systems: the first is with one hidden and context layers, the 
second one is constituted of two hidden and context layers and 
the third one has three hidden and context layers. Table I 
presents the deep Elman neural network caracteristics modeling 
the non-linear process. 
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TABLE I.  DEEP ELMAN NEURAL NETWORK -NON-LINEAR PROCESS. 

Parameters 

One hidden 

and context 

layers 

Two hidden 

and context 

layers 

Three hidden 

and context 

layers 

𝒏𝟏 1 1 1 

𝒏𝒔 1 1 1 

𝒏𝒄𝟏
 4 4 4 

𝒏𝒉𝟏
 4 4 4 

𝒏𝒄𝟐
  4 4 

𝒏𝒉𝟐  4 4 

𝒏𝒄𝟑
   4 

𝒏𝒉𝟑
   4 

iterations 3000 3000 10000 

Learning coefficient 0.2 0.2 0.4 

 
Figures 4-6 represent the evolution of the criterion (1) for 

the first non-linear process. Table II presents deep Elman 
neural network characteristics modeling the greenhouse. 
Figures 7-9 present the evolution of the criterion Ek in the case 
of the second process (greenhouse). From the Figures and for 
the two considered systems we conclude that the error Ek is 
lower in the case of two hidden and context layers network. 
Thus, the convergence of the error is faster in the case of the 
neural structure with a single hidden and context layer than the 
other neural structures. 

 

 
Fig. 4.  Evolution of Ek in the case of one hidden layer network. 

 
Fig. 5.  Evolution of Ek in the case of two hidden layers network.  

 
Fig. 6.  Evolution of Ek in the case of three hidden layers network. 

 

TABLE II.  DEEP ELMAN NEURAL NETWORKW-GREENHOUSE 

Parameters 

One hidden 

and context 

layers 

Two hidden 

and context 

layers 

Three hidden 

and context 

layers 

𝒏𝟏 8 8 8 

𝒏𝒔 2 2 2 

𝒏𝒄𝟏
 4 4 4 

𝒏𝒉𝟏
 4 4 4 

𝒏𝒄𝟐
  4 4 

𝒏𝒉𝟐  4 4 

𝒏𝒄𝟑
   4 

𝒏𝒉𝟑
   4 

iterations 10000 10000 20000 

Learning coefficient 0.1 0.2 0.4 

 

 
Fig. 7.  Evolution of Ek in the case of one hidden layer network. 

 
Fig. 8.   Evolution of Ek in the case of two hidden layers network. 

 
Fig. 9.  Evolution of Ek in the case of three hidden layers network. 

In order to compare and validate the three neural models 
the criterion (29) is considered: 

( )
1 1

( ) ( )
= =

= −
snnb

m

t i i

k i

E abs y k y k    (29) 

where, nb is the operating interval, k is the sample time, ns is 
the number of outputs, ( )iy k is the i-th output of the system at 

time k and ( )m

iy k is the i-th output of the neural model at time k. 

In the case of the first system, nb=1000. 

Figures 10-12 represent the evolution of the process output 
(continuous line) and the neural model output (dashed lines).  
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Fig. 10.  Evolution of the process and the one hidden layer neural model 

outputs. Et=59.496. 

 
Fig. 11.  Evolution of the process and the two hidden layer neural model 

outputs. Et=57.8332. 

 
Fig. 12.  Evolution of the process and the three hidden layer neural model 

outputs. Et=58.9947. 

In the case of the second system (greenhouse), we have a 
data file of the whole parameters’ values acting on the 
greenhouse during one day. The sampling time is one minute, 
so in one day (24 hours), we obtain a data file with 1440 lines. 
We divided the data file in two parts, each part constituted of 
720 lines. The first part was used for learning (training) and the 
second was used for the validation. In our case: 

VEl(k)=[Ov(k),Ch(k),Br(k),Om(k),Te(k),He(k),Rg(k),Vv(k)]T

,netom(k)=[Ti(k) Hi(k)]. Here nb=720. 

Figures 13 and 14 represent the evolution of the real 
internal climate (temperature and hygrometry) with continuous 
lines and the one hidden layer neural model outputs with 
dashed lines and using the validation data file part. Here 
Et=88.7962. 

 

 
Fig. 13.  Evolution of the internal temperature. 

 
Fig. 14.  Evolution of the internal hygrometry. 

Figures 15 and 16 represent the evolution of the real 
internal climate (temperature and hygrometry) with continuous 
lines and the two hidden layers neural model outputs with 
dashed lines and using the validation data file part 
(Et=82.4499). Figures 17 and 18 represent the evolution of the 
real internal climate with continuous lines and the three hidden 
layers neural model outputs with dashed lines and using the 
validation data file part (Et=90.5219). 

 
Fig. 15.  Evolution of the internal temperature. 

 
Fig. 16.  Evolution of the internal hygrometry.  

 
Fig. 17.  Evolution of the internal temperature. 

 

Fig. 18.  Evolution of the internal hygrometry.  
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From the previous figures and results, we conclude that the 
total error is lower in the case of two hidden and context layers 
than the one of the other neural networks. This Elman neural 
structure gives better performance results for the modeling and 
validation steps. 

VI. CONCLUSION 

In this paper, we trained a deep Elman neural network to 
improve the modeling of complex systems. After observing the 
simulation results, we concluded that the direct model 
reproduces the dynamic behavior of two processes with 
acceptable performance. We showed that an Elman network 
with two hidden and two context layers is the best and the most 
efficient structure for modeling the complex process. The 
obtained model will be used in a control oriented task.  
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