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Abstract—The present paper deals with the phenomenon of 
electrical treeing in solid insulation, under the influence of 
mechanical stresses. In this short review, it is indicated that 
mechanical stressing can affect the propagation of electrical trees 
and –depending on whether it is tensile or compressive- it can 
facilitate (or render more difficult) the breakdown. In aged 
insulating materials, electrical trees can appear very quickly and 
can lead to breakdown. 
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I. INTRODUCTION  

 Electrical trees can come about from diverging electrical 
fields, as suggested in [1]. They usually have a distinct 
dendritic form, but –depending on the experimental 
conditions– can also acquire a bushy form. They develop from 
points of electric stress concentration. The latter can be either a 
sharp electrode edge, a sharp foreign conducting inclusion or a 
point where discharges in a weaker medium impinge on the 
dielectric surface [1]. Electrical trees may appear, among 
others, in extruded cables, since these are intimately related to 
partial discharges [2]. In most breakdowns the ultimate failure 
is preceded by treeing, the time interval between the beginning 
of a tree and the final failure may vary from microseconds to 
months [3]. Gaseous decomposition products may be formed 
during electrical tree formation [4]. It has been reported that a 
critical electric field is vital for the formation of a tree from a 
void [5]. The role of space charges in the formation of trees 
was discussed in [6], where the existence of a possible link 
between the concentration of space charges in the crystalline-
amorphous interfacial regions and the subsequent formation 
and propagation of tree channels was suggested. 

However, apart from the purely electrical stresses, high 
voltage insulation has to also be confronted with mechanical 
stresses. As reported in [7], a repeated Maxwell stress (εE2 /2, 
with ε the relative permittivity of the material and E the applied 
electric field) is induced around a needle point by the applied 
AC voltage. A compressive force is subsequently applied to the 
insulating material. A mechanical stress perpendicular to the 

electric field direction appears causing crazing when a critical 
value is reached. Crazing may develop to a void crack and gas 
discharges will expand the tree channel even further. Earlier 
work has also pointed out that repeated Maxwell stresses result 
into the time to initiate trees decreases with increasing 
frequency [8]. It is in the context of applied mechanical stresses 
that the present paper will try to give a short review of the 
propagation of electrical trees. In the context of the present 
review no mention will be made of water trees, which are 
altogether another significant factor affecting the lifetime of 
electrical insulations. 

II. ELECTRICAL TREES AND THEIR NATURE 

Electrical trees are a sign of insulation degradation. They 
consist of narrow hollow channels which are branched and 
have the general appearance of a botanical tree. Such a network 
of gas-filled channels emanates from already existing cavities 
or contaminants. Partial discharges may be responsible for such 
phenomena. If the degradation is complete, electrical trees go 
through the insulation and short-circuit it [9]. Ionization causes 
chemical reactions and allows for the breaking of chemical 
bonds of the polymers. Electrical trees ensue [10]. Electrical 
trees may acquire the form of either a specific dendritic type or 
a bushy form [11]. It was noted quite early that, in case of AC 
voltage rising at a constant rate, the maximum length of a tree 
channel is related quantitatively to the maximum charge pulses 
which accompany the development of the tree channel and that 
the total length of the tree channel is also related quantitatively 
to the power of discharges obtained with the distribution 
characteristics of current pulses [12]. It is evident that partial 
discharges and electrical treeing are intimately related. 

An electrical tree may develop in three stages: first there is 
the period of initiation, then the period of development and 
after that the period of the widening of the already existing tree 
channels. In general, a certain amount of time is required in 
order for all three phases to fully develop. Electrical trees are 
caused because of the electrical and/or the electromechanical 
deterioration of an insulating material, which may exist in 
regions of high local electric field. Partial discharges affect the 
propagation of electrical trees, on the other hand the structure 
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deformations of the amorphous inter- and intra-spherulitic 
spaces is given in [29]. However, it is beyond the scope of the 
present paper to also tackle the subject of water trees). A good 
overall picture of the development of electrical trees under dry 
conditions, albeit not under mechanical stresses, is given in 
[30]. 

References [27, 28, 30] conform with the data presented in 
[31], where externally applied tensile stress has as a result the 
deformation of XLPE samples and the formation of more 
ionizable species than in undeformed samples. Consequently, 
mechanical deformation results in more space charges. The 
reason behind this is that whereas under normal circumstances 
cross-linking byproducts are locked in molecular chains of 
XLPE, with the tensile stress applied, molecular chains start to 
move. Such movement may release the locked byproducts. In 
other words, the released byproducts form part of the ionizable 
species. The distinction between external mechanical stresses 
and internal mechanical stresses is also pointed out in [32], 
where it was discussed that either of them can influence the 
time required for inception and the extent of the growth of 
treeing process. The higher the mechanical stresses, shorter 
inception time and longer growth of electrical trees within a 
specified time were measured. Earlier publications remarked 
that a plausible mechanism of failure in electrical machine 
insulation can be the inception of a microcrack, in which partial 
discharges or electrical tree mechanisms may become operative 
during the final stages of breakdown [33]. It has to be noted 
that in [33] only external mechanical stresses were taken into 
account. Internal mechanical stresses from manufacturing as a 
cause of easier creation of electrical trees and consequently of 
reduction of breakdown strength in cable insulation was 
discussed in [34]. The importance of internal mechanical 
stresses in locally causing electrical field intensifications and 
subsequently electrical degradation mechanisms in MV cables 
was also discussed in [34]. 

Another approach was adopted by some researchers, 
considering that tree initiation arises from the generation of 
small cracks (by fatigue failure due to cyclical electrostatic 
forces induced by the applied voltage) and tree propagation as 
the result of shock waves generated by microscopic explosions 
within the insulating material due to localized intrinsic 
breakdown on the crack surfaces [35-37]. In yet another 
publication [38], the authors considered a system of a 
propagating electrical tree and the regions surrounding the tree 
tips. Such regions were defined as ‘damage process zones’ and 
they were considered as zones of irreversible damage (caused 
by electromechanical, thermal and chemical processes). Such 
‘damage process zones’ can coalesce to larger zones, i.e. to 
larger microcavities. The latter in turn can form a new tree 
channel. Such an approach is reminiscent of the approach put 
forward several years ago in [39], in which the authors 
proposed a cumulative model for breakdown. In that 
publication, low-energy charge carriers are able to extend the 
defects and increase their density so that clusters of interacting 
defects may form. These clusters may grow into macroscopic 
defects in the direction of the applied field, which in turn will 
form a single channel with high probability of continuous 
conduction between the electrodes. Supporting theoretical 
evidence to [38] and [39] comes also from [40], where it was 

remarked that a major factor for crack development is the 
existence of mechanical stress together with electrically 
induced stress. Tree growth can be hindered by compressive 
forces and encouraged by tensile forces. Space charges may 
also influence the local electric field, as already pointed out in 
[31]. A developing crack generates a momentarily low pressure 
path along the fracture path and in the field direction. Electrical 
discharges may ensue. An experimental validation of the above 
comes from a recent study on mica/epoxy machine insulation 
with the aid of micro computed tomography (μCT), which 
allows for 3-D reconstruction of the test object [41]. It was 
clearly shown that defects may coalesce into larger ones. 
Moreover, it showed that mechanical stresses may help the 
creation of breakdown paths. 

In another study, insulating materials such as crosslinked 
polyethylene (XLPE), polyvinyl chloride (PVC) and 
polyphenylene ether (PPE), were tested regarding their 
mechanical properties [42]. PVC and XLPE were ductile and 
exhibited more elongation prior to breaking, whereas PPE 
exhibited brittle behavior. The durability of XLPE under strain 
fatigue testing was the largest, followed by PVC and PPE. 
Reference [42] did not present any data on electrical treeing but 
its data on mechanical experiments are useful in indicating 
which materials are deemed to be suitable for high voltage 
applications. Detailed analysis of the residual internal stresses 
in cable insulation with the aid of the photoelastic method was 
offered in [43], where it was shown that the highest resistance 
to electrical trees was observed in regions of the insulation in 
which the material presented the best uniformity. However, 
[43] did not find any significant influence of the residual 
mechanical stresses induced by the extrusion process on the 
insulation properties such as breakdown strength, tree inception 
voltage and tree propagation time, a conclusion that is 
somehow difficult to reconcile with the previous statement. 
The importance of mechanical stresses –mainly for electrical 
machines– was discussed in [44], where it was pointed out that 
the mechanical stress can appear in the form of compression, 
tension, bending, vibration, and impact. Such factors may lead 
to fissures in the bulk of the material or at interfaces with other 
materials in an insulation system, which in turn may encourage 
electrical trees and subsequently the breakdown.  

The importance of defects or of extended defects or crazes 
aligned on an injecting/extracting site on an electrode was 
stressed in [45]. Aligned free volume defects may act as 
nucleation sites for bigger cracks under the appropriate 
conditions. Electrical tree propagation rates are mainly 
influenced by mechanical factors, although experimental 
results are sometimes confusing [45]. Electrical trees propagate 
preferentially in a plane perpendicular to the direction of the 
tensile stress. Ideas expressed in [45] are reminiscent of [39] as 
well as of [17, 18], where both coalescing of microdefects and 
the mechanism of injection/extraction of charge carriers were 
mentioned. The question of mechanical stresses together with 
the thermal expansion coefficients of the materials was 
mentioned in [46]. Mechanical stress, which may be influenced 
by the modulus and thermal expansion coefficients of different 
materials, may be further increased by electromechanically 
induced stresses. Such events may in turn cause electrical trees 
and lead to the breakdown path. In [47], experimental work 
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indicated that polyester resin samples suffer from electrical 
trees when they are mechanically stressed and that the tree 
growth resistance weakens. However, the authors of [47] are 
not very explicit about the sort of mechanical stress they 
applied. The significance of mechanical properties in 
translucent as well as in transparent types of silicone rubber is 
apparent in [48], bearing also in mind the different chemical 
curing reactions. Although [48] was mainly orientated in 
studying the breakdown strength, it is also evident from some 
experimental data that electrical trees are affected by the 
mechanical properties. The complexities of electrical tree 
growth and the factors affecting it were analyzed in [49], where 
the authors, in examining mechanically pre-stressed fiber 
reinforced Araldite 5052 epoxy resin samples, they explained 
the apparent retardation of the tree growth by the compressive 
residual stresses in the resin, which tend to increase tree 
branching and therefore retard tree growth. A comparison 
between syndiotactic polypropylene (s-PP) and XLPE 
indicated that both tree branching and partial discharge activity 
were less in the former than in the latter. This was contributed 
by the researchers also to the superior mechanical properties 
(yield stress, ultimate stress, elongation at break and elasticity 
modulus) of s-PP [50]. It was reported that, in case of a tree 
branch reaching the ground electrode, the channel surface may 
re-crystallize and rapidly regain the previous breakdown 
strength. The combined effect of discharge gas pressure and 
surface melting can possibly explain the development of 
several parallel tree branches to the ground electrode before 
breakdown.  

Internal residual mechanical strain was studied in [51], 
where the way of manufacturing of transparent insulating 
materials –polymethyl methacrylate (PMMA), polystyrene 
(PS) and polycarbonate (PC)– and its influence on electrical 
treeing propagation with divergent electric fields was 
investigated. It was reported that electrical treeing stems from 
micro-cracks in the vicinity of the needle electrode, and in fact 
from its lateral side and not from the needle tip. This implies 
that the residual mechanical strain –formed during the 
manufacturing process– plays an important role. The 
conclusions of [51] are in qualitative agreement with those of 
[43]. The conclusions of [51] were confirmed with 
polycarbonate samples in a later publication [52], where it was 
pointed out that the melt flow directions and the fringe patterns 
may influence the direction and propagation of electrical trees. 
An indirect evidence of the above is offered in [53], where an 
investigation of the electrical trees in outer and inner layers of 
different voltage rating XLPE cable insulation indicated that 
the growth rate of electrical trees in a 66 kV cable is much 
larger than that in the higher voltage rating cables. This was 
attributed to the size of spherulites, the extrusion process, the 
crystallization state, which in turn were depended on the 
production process, i.e. on the inner mechanical stresses that 
may come about. In line with the above is also [54], where it 
was indicated that when the limit of mechanical elastic 
breakdown is surpassed, electrical trees are initiated and 
propagate. In conjunction to [53, 54], the researchers of [55] 
investigated a double electrical tree structure in XLPE and they 
found that the residual mechanical stress, among other factors, 
influenced the growth of the electrical tree and caused the 

insulation material around the core of XLPE cable to degrade 
seriously. The authors of [55] attribute the initiation and 
propagation of electrical trees to the charge injection-extraction 
mechanism, first proposed in [17, 18]. In [56], authors 
investigating silicone rubber, a material suitable for cable joints 
and cable terminals, showed that under tensile stress, the 
electrical tree length, fractal dimension and accumulated 
damage become larger as the tensile rate increases, indicating 
thus the higher tensile rate accelerates the treeing process. With 
a higher compressive rate, the opposite is true, i.e. the 
compressive stress retards the electrical tree propagation. The 
authors attributed the aforementioned phenomena to the fact 
that under tensile stress, the attraction bond between the 
molecules is weakened, whereas with a compressive stress 
more attraction bonds are generated and the microcavities are 
suppressed and consequently the initiation of electrical trees is 
hindered. Regarding the respective influences of the tensile and 
the compressive stresses on the initiation and propagation of 
electrical trees, the conclusions of [56] do not qualitatively 
differ from those of earlier publications [57]. The experimental 
data from [56, 57] confirmed earlier observations reported in 
[58]. Electro-mechanical stresses may irreversibly deform 
insulation. Such a deformation becomes partly irreversible 
when the electrostatic energy is equal to the cohesion energy of 
the polymer with the result of weak attraction bonds breaking 
and the possible formation of radicals. At such a point, 
removing the electric field will not bring back the stressed 
molecules in their original state [59]. Mechanical stresses in 
machine insulation may lead to molecule fracture, new charge 
carriers and generation of polar species, which in turn may lead 
to a change of tanδ, creation of nano- and micro-cracks, partial 
discharges and eventual formation of electrical trees. Needless 
to say that such stresses combined with electrical and thermal 
stresses cause the rapid breakdown of machine insulation [60]. 

IV. PROPOSALS FOR FUTURE RESEARCH 

In this short review an effort was made to point out some of 
the aspects of electrical treeing and the influence of mechanical 
stresses upon it. Most of the work done until now was 
performed with conventional insulating materials. Given the 
great advances in the field of polymer nanocomposites [61-63], 
it would be interesting to see how the various mechanical 
stresses act upon these materials. Some studies in a relevant 
direction have already been done [64]. Moreover, it would be 
interesting to see how both conventional insulating materials 
and polymer nanocomposites react to mechanical stresses 
which are not static in nature. An even more exciting prospect 
can be the designing of experiments and proposal of models in 
which electrical, mechanical and thermal stresses act at once on 
insulating materials. Regarding also what was mentioned in 
[28] about the possibility of lower strains than the yield stress 
to cause the short time AC breakdown strength, it would 
perhaps be worthwhile to investigate this in relation to research 
done years ago w.r.t. the possibility of having charging effects 
below inception, which in turn may shorten the lifetime of an 
insulation [65]. In [28], as well as in [26, 65-68], it is indicated 
that there may be some sort of damage even below either the 
yield stress or the so-called inception voltage. Such ideas may 
have some repercussion in estimating the remaining lifetime of 
insulation, especially if this is subjected to both electrical and 
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mechanical stresses. Needless to note that such ideas may also 
have some effect on some of the known lifetime models in 
which a threshold level of voltage is assumed. In relation to 
that, it would be worthwhile to investigate the electrical trees 
under mechanical stresses with very low frequencies. Since 
partial discharge activity is inexorably related to electrical 
treeing, it would be interesting to follow the detectability of 
partial discharge activity and electrical trees at low frequencies 
[69]. 

Another possibility for further work may be the simulation 
of electrical trees under both the influence of electrical and 
mechanical stressing. Until now there were numerous 
publications on the simulation of electrical trees in solid 
insulation [70-75] but not much work has been done on the 
simulation of trees under the influence of the above mentioned 
stresses. Still another possibility for further research would be 
the investigation of the role of mica barriers in machine 
insulation under the influence of both electrical and mechanical 
stresses. Until now a lot of work has been done regarding either 
the effect of mica barriers in delaying electrical trees [76] or the 
simulation of electrical trees within machine insulation [77]. 
The prospect of experimentally investigating electrical tree 
propagation in machine insulation under mechanical stresses 
seems to be equally challenging. 

V. CONCLUSIONS 

In the present paper a short review on the propagation of 
electrical trees in connection of the mechanical stresses was 
given. Mechanical stresses, either external or internal, may 
influence the growth of electrical trees. The technical literature 
tends to indicate that electrical tree development is very 
sensitive to mechanical stresses. The latter tend to affect in a 
crucial manner the inner workings of the insulating material, 
providing thus possible paths to breakdown. A clear distinction 
between tensile and compressive stresses is given in the 
technical literature, with the former rendering electrical tree 
propagation easier, whereas with the latter electrical trees 
propagate with more difficulty. 
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