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Abstract—In 2015, about 20% of the 52,231 fatal crashes that 

occurred in the United States occurred at unsignalized 

intersections. The economic cost of these fatalities have been 

estimated to be in the millions of dollars. In order to mitigate the 

occurrence of theses crashes, it is necessary to investigate their 

predictability based on the pertinent factors and circumstances 

that might have contributed to their occurrence. This study 

focuses on the development of models to predict injury severity of 

angle crashes at unsignalized intersections using artificial neural 

networks (ANNs). The models were developed based on 3,307 

crashes that occurred from 2008 to 2015. Twenty-five different 

ANN models were developed. The most accurate model predicted 

the severity of an injury sustained in a crash with an accuracy of 

85.62%. This model has 3 hidden layers with 5, 10, and 5 

neurons, respectively. The activation functions in the hidden and 

output layers are the rectilinear unit function and sigmoid 

function, respectively. 

Keywords-crashes; unsignalized intersection; artificial neural 

network; injury severity  

I. INTRODUCTION  

Even though intersections constitute a relatively low 
proportion of the facilities of transportation systems, a 
significant number of crashes occur at these locations, 
especially in urban areas. In California for instance, an annual 
average of 1.5 crashes occur at unsignalized intersections in 
rural locations, compared to an average of 2.5 crashes per year 
in urban locations [1]. Data from the World Health 
Organization (WHO) reveal that 1.25 million people die 
annually worldwide in road crashes. The economic cost of 
these deaths is estimated to be approximately $260 billion per 
year [2]. In the United States, there were a total of 37,456 
fatalities in road-related crashes reported in 2016 [3]. Though 
most of these crashes occurred on road segments, a significant 
number occurred at or near intersections. Out of the total of 
52,231 fatal crashes in the United States in 2015, 
approximately 4.4% (2,298) of the crashes occurred at STOP-
controlled intersections, while 7.5% (3,917) of the crashes 
occurred at intersections controlled by traffic signals. 
Intersections without any type of traffic control device recorded 
the highest number of fatal crashes (4,227) [4]. 

Several studies have investigated the causes of these 
crashes. These causes are either driver-induced, or occur due to 
road geometry, road defects, vehicle defects and atmospheric or 
weather conditions. Various countermeasures have been 
proposed and/or implemented to reduce the occurrence of 
crashes at intersections, which in some instances have been 
successful. In order to effectively reduce the frequency and 
mitigate the severity of intersection related crashes, it is 
necessary to explore the predictability of these crashes based 
on the pertinent factors and circumstances that might have 
contributed to the occurrence of these crashes. Several studies 
have resulted in the development of mathematical models that 
predict crashes on roadways in general and, in a few instances, 
at unsignalized intersections in particular. These mathematical 
models include linear regression and machine learning 
methods. Given the varying characteristics of intersections, it is 
necessary to develop models that are focused and specific to a 
particular set of conditions. This study therefore focuses on the 
development of models to predict the severity of right-angle 
crashes involving two vehicles at unsignalized intersections in 
urban centers using ANNs. 

II. LITERATURE REVIEW 

A. Contributory Factors for Intersection-Related Crashes 

There are many factors that determine the degree of injury 
sustained by people involved in crashes at unsignalized 
intersections. However, it is shown that only certain factors are 
statistically significant predictors. Authors in [5] assessed the 
degree of injury sustained by drivers involved in angle 
collisions in relation to the fault status of drivers. The results of 
the study showed that drivers who were not at fault tended to 
sustain more severe injuries than those who were at fault. It 
was further determined that injury severity was affected by 
factors including time of year, speed limit, age, gender, 
restraint/helmet use, and alcohol/drug use. Authors in [6] 
concluded that the road surface condition (wet or dry) was a 
significant predictor of injury severity. Additionally, female 
drivers are more likely to sustain severe injuries than male 
drivers. Crashes at urban areas were determined to result in less 
serious injuries than crashes at rural areas [6]. Also, traffic 
volume on a major road is a significant predictor of crashes at 
unsignalized intersections [7].  
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The geometric characteristics and features of unsignalized 
intersections have also been found to be potential explanatory 
variables in crash prediction models. Authors in [8] predicted 
the frequency of accidents at unsignalized intersections in 
urban areas using negative binomial models. It was concluded 
that besides traffic exposure functions such as traffic flow, 
which usually significantly predict crashes, intersection 
geometrics, absence of street lighting and dedicated left-turning 
lanes are positively correlated with accident frequency at 
intersections. Typical geometric characteristics included 
number of lanes on major road, width of lanes, and presence of 
median on intersecting roads. The study further revealed that T-
intersections with Yield control had a much lower accident 
potential than those with Stop control. 

B. Crash Prediction Models  

Several modeling techniques have been employed to predict 
crashes at intersections.  

1) Linear Regression Models  

Linear regression modeling is an approach to establish a 
relationship between scalar responses, also called dependent 
variables, and other explanatory (or independent) variables. 
Model parameters are estimated using a data set of values of 
the response and explanatory variables. The model is usually 
fitted to the observed data set using the least square approach. 
Linear regression models take the form: 

��	 =	�� +	��	�� + �
	�
 +⋯+	��	� + ؏�	 (1) 

where, yi is the i
th dependent variable, β1, β2… βp are estimated 

parameters, xi1, xi2…xin are the predictor variables of the i
th 

dependent variable and ؏� 	 is the error term. The error term is 

an independent and normally distributed random variable with 
mean of zero and a variance greater than zero. Linear 
regression modelling has been applied in several studies to 
establish various relationships between the frequency of injury 
crashes and other traffic characteristics. Authors in [9] 
investigated the relationship between the number of injuries or 
property damage only (PDO) crashes that occur annually at 
intersections and traffic and environmental factors. The crash 
records (ranging from 1984 to 1987) of 2,488 intersections in 
California were sampled. The linear regression analysis 
employed in this study was conducted in two levels. In the first 
level, a simple linear regression model was developed with 
injury/PDO crashes per year as the response variable and traffic 
intensity, expressed in millions of vehicles entering the 
intersection per year from all approaches, as the predictor 
variable. In the second model, additional information such as 
design, traffic control, proportion of cross street traffic, and 
environmental features were included as predictor variables. 
The results of the analysis showed that the accuracy of the 
model improved as more predictors variables were added. 

Though linear regression models are easy to use and 
interpret, it has been shown that they are not ideal for crash 
predictions. Crashes are usually sporadic and random in nature 
and hence are not best fitted by linear relationships. Also, the 
assumption that the error term is normally distributed is not 
accurate for crash predictions which are usually discrete and 
non-negative. Further, some factors have been determined to 

strongly correlate with each other, thus introducing 
multicollinearity thereby invalidating such linear models [10]. 
In overcoming the shortcomings of the linear regression 
models, generalized linear models (GLMs) have been used to 
model crashes at intersections. GLMs are a flexible 
generalization of the ordinary linear regression that can 
accommodate the non-normal distributed error terms. The most 
common forms of generalized linear models used in crash 
prediction models are the negative (NB) model and the ordered 
probit model (OPM) 

2) Negative Binomial Model  

NB models are a generalization of the Poisson regression. 
Unlike the Poisson models where the variance of the 
distribution of the response variables is equal to its mean, in 
NB models, the variance differs from the mean. NB models 
have been found to be suitable for crash predictions due to the 
nature of the dependent variables in such analysis. Usually the 
response required is the number of crashes at a specific 
location. Such responses are nonnegative integers and generally 
follow the NB distribution. The distribution is given by the 
following Poisson-Gamma distribution: 

��(Y=yi |ui,α)= ɼ(������)
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where, u is the mean of the dependent variable y, β is an 
estimated parameter to be estimated, α is the heterogeneity 
parameter, and xi is the i

th the predictor variable. Authors in 
[11] investigated the relationship between crash frequencies 
and factors such as traffic conditions, geometric and 
operational characteristics or roadways, and weather conditions 
using data of crashes that occurred from 2004 to 2010 on a 
motorway in Auckland. The NB regression model developed 
had a goodness of fit, ρ2 of 0.119. Additionally, several 
individual predictors such as length of road segments, AADT, 
number of lanes and shoulder width were found to be 
significant predictors of the model. 

3) Ordered Probit Models 

The ordered probit model (OPM) is used in developing 
models which have an ordered response. This approach in 
modeling data employs the use of the probit link function. The 
latent continuous metric underlying the ordinal responses 
observed are partitioned into a series of regions corresponding 
to the ordinal categories. Generally, the probability of obtaining 
a particular outcome is given by: 

��(�� = �| !) =
"#$	(%&'(�))

(��"#$�%&'(�)�)
−	 "#$�%&��'(�)�
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where, yi is an observable ordinal variable, Xi is a vector of 
exogenous variables, β is a vector of unknown parameters to be 
estimated and and τj is the threshold associated with the j

th 
ordinal partition interval which are assumed to be of ascending 
order. OPM has been applied in the development of several 
crash prediction models which seek to predict injury severity 
based on several factors. Authors in [12] developed an OPM 
that sought to relate the severity of crashes experienced at 
freeway exits. Crash data for 326 locations in Florida were 
sampled. The results of the study indicated that the factors 
which significantly influenced crash severity included mainline 
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lane number, length of ramp, difference of speed limits 
between mainline and ramp, light condition, weather condition, 
surrounding land type, alcohol/drug involvement, road surface 
condition, and crash type. The model developed had a 
goodness of fit of 0.019 and a chi-squared goodness of fit value 
of 95.63. 

4) Empirical Bayes Refinement of the GLM  

Crash estimates made with GLMs are susceptible to 
regression-to-the-mean. The regression to mean occurs when a 
randomly large number of accidents during a period is 
normally followed by a reduced number of accidents during a 
similar after period, even if no measure has been implemented. 
The GLMs do not account for this effect. Hence, to improve 
the accuracy of the predictions made with GLMs, the empirical 
Bayes (EB) method is usually applied. The EB method 
compensates for the regression-to-the-mean bias by pulling the 
crash count towards the mean. Thus, prior data (observed crash 
counts) are combined with the predicted crash frequency from 
the GLM to calculate a corrected value. The corrected value is 
expected to lie somewhere between the observed crash 
frequency and the predicted frequency from the GLM. This is 
expressed as: 

( )1 Observed crashes frequencyE Weight Weightµ= × + − ×  (4) 

where, E is the corrected value, and µ is the average number of 

crashes (determined from the GLM) [13]. 

5) Artificial Neural Networks (ANNs) 

ANNs are mathematical models inspired by the biological 
neural networks in the human brain. ANNs are used in 
engineering to perform complex tasks such as pattern 
recognition, forecasting, data compression and classification. 
The effectiveness of an ANN is based on its ability to 
approximate both linear and nonlinear functions to a required 
degree of accuracy using a learning algorithm, and to build 
‘‘piece-wise’’ approximations of the functions [14]. 
Classification or forecasting using ANNs involves training and 
learning procedure, where, historical data (a set of input data 
with known outputs) is presented to the network. Usually large 
amounts of such data are required for the training of the 
network. The network goes through a learning process by 
constructing a network of inputs and outputs, and weights 
assigned to each mapping are adjusted at each iteration. The 
method by which these weights and bias levels of a network are 
updated is determined by the learning rule used. Thus, the 
learning rule helps a neural network to learn from the existing 
conditions and improve its performance. There are several 
learning rules used in training neural networks. Notable among 
the rules are the hebbian, perceptron (error-correction), delta, 
correlation and outstar learning rules [15]. However, the most 
common known rule is the multilayer perceptron (MLP). MLP 
basically consists of three layers: input layer, hidden layer, and 
output layer. MLP is a feed forward network in which 
information flows from the input layer through the hidden to 
the output layer to produce the outcome. These layers have 
interconnected nodes (neurons). The interconnections are 
assigned weights (representing information flow) which are 
computed using mathematical functions. The outputs for 

specific inputs are obtained by adjusting the weights to 
minimize the errors between the output produced and the 
desired output by error-back propagation. The MLP is known 
to be a universal approximator because of its ability to 
approximate continuous functions on a compact set of real 
numbers with little assumption made. Activation functions, 
also called transfer functions, are an essential component of 
ANNs. Activation functions are models in the output neurons 
of the ANN which introduce non-linearity into the network. 
They function by calculating the weighted sum of their inputs 
and adding a bias, then deciding whether a neuron should be 
activated or not. The three most common types of activation 
functions used in an ANN are the sigmoid, the hyperbolic 
tangent, and the rectified linear unit [16]. Authors in [17] 
utilized ANNs to develop a model to show the relationship 
between crash severity on urban highways, and traffic variables 
such as traffic volume, flow speed, human factors and road, 
vehicle and weather conditions. The study showed that MLP 
with feed forward back propagation networks provided the best 
results compared to other learning methods. Network 
architecture with 2 hidden layers with 17 and 7 neurons 
respectively were determined to be the best. Mean square errors 
(MSE) within acceptable range of 3% to 4% were achieved. 
Also, correlation coefficients of 86% to 87 % were achieved. 

III. METHODOLOGY 

A. Study Area 

This study is based on data obtained in the District of 
Columbia (DC). The capital of the USA, Washington, DC is 
divided into four (equal) quadrants areas: Northwest (NW), 
Northeast (NE), Southeast (SE), and Southwest (SW) which 
are further divided into eight wards. As of July 2018, the 
population of DC was about 702,455 with a growth rate of 
approximately 1.41% [18]. The city is highly urbanized, and 
it’s ranked the sixth most congested city in the United States 
with each driver spending an average of 63 hours in traffic 
annually [19]. It has a land area of 68.34mi2 and a total of 
1,503 miles of roadway comprised of local roads, collector 
roads, minor arterials, principal arterials, freeways and 
interstates [20]. Also, the city has about 7,700 intersections of 
which 1,450 are signalized [21]. The American Society of Civil 
Engineers’ 2017 infrastructure report card reported that about 
95% of the roads in DC are in poor condition [22]. 

B. The Crash Database System  

Crash prediction models are data dependent and as a result 
the accuracy of the developed models depends largely on the 
quality of the available crash data. To ensure that a reliable 
model is developed, this research utilized traffic crash data 
from the District Department of Transportation’s (DDOT’s) 
crash database called Traffic Accident Reporting and Analysis 
Systems Version 2.0 (TARAS2). The District of Columbia 
Metropolitan Police Department (MPD) records traffic crash 
information at the scene of crashes electronically on a Police 
Department Form number 10 (PD-10) crash reporting form. 
The crash data is then downloaded through secure servers from 
MPD into DDOT’s database and are then processed and made 
available in TARAS2, which is an Oracle-based application. 
TARAS2 contains data fields that can be broadly categorized 
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under vehicle characteristics, environmental conditions, 
roadway characteristics, traffic exposure characteristics, as well 
as crash location, date, time, crash type, crash severity and 
information on of persons involved. 

C. Data Extraction and Encoding  

Nine years of crash data (2008-2015) were queried and 
extracted from TARAS2. The data were then filtered to obtain 
angle crashes involving two vehicles at unsignalized 
intersections. Further, the extracted data were cleaned by 
identifying and removing duplicate and incomplete crash 
records and irrelevant data fields. In all, 3,307 data points were 
extracted and used for analysis. The extracted data set 
contained the following fields: accident complaint number, 
main street name, side street name, year of accident, month of 
accident, time of accident, day of week, quadrant of accident 
occurrence, type of collision, road surface condition, street 
lighting condition, lighting condition, weather condition, traffic 
condition, traffic control type, drivers’ age, drivers’ gender, 
contributing circumstances, and injury severity. Only numerical 
data can be analyzed by ANNs. Hence, qualitative data must be 
converted to quantitative data. Thus, both input and output data 
must be encoded into either real or integer values. Secondly, 
binary method (0 and 1) of encoding has been determined to 
yield better results since it minimizes the loss functions values 
with respect to the models’ parameters. The loss value 
determines how well the model fits the data set. The lower the 
loss function value the better the model fits the data set. Table 
II presents the variables and coding scheme used in this study. 

D. Types of Collision  

The crash types considered for this study are angle 
collisions. Three types of angle collisions are specified: right-
angle, right turn, and left turn collisions. 

• Right-angle collision: This type of collision occurs when 
the side of one vehicle is impacted by the front of another 
vehicle which is traveling in a direction at right angle to the 
direction of the former vehicle. Figure 1 depicts a right-
angle collision at an intersection. 

• Right turn collision: This type of collision occurs when a 
vehicle turning right at an intersection is impacted by a 
vehicle from the other intersecting road. Figure 2 depicts a 
right turn collision. 

• Left turn collision: This type of collision occurs when a left 
turning vehicle at an intersection is impacted by a vehicle 
from the oncoming traffic. Figure 3 depicts a left turn 
collision. 

E. Injury Severity  

The outcome variable describes the degree of injury 
severity sustained by persons involved in a crash. The crash 
database specifies five degrees of injury severity: No injury, 
complain, non-disabling injury, disabling injury and fatal. Due 
to the insignificant percentage of fatal and disabling injury 
crashes in the data set, all complain, injury and fatal crashes 
were categorized as injury crashes. Table I shows the levels of 
crashes used in the analysis. 

 

Fig. 1.  Right-angle collision 

 

Fig. 2.  Right turn collision 

 

Fig. 3.  Left turn collision 

TABLE I.  LEVELS OF INJURY SEVERITY 

Injury Severity Level 

No Injury Non-Injury 

Complain 

Injury 
Non-Disabling Injury 

Disabling Injury 

Fatal 

F. Data Standardization 

To achieve accurate predictions from machine learning 
models it is necessary that variables used in developing the 
models are of equal scale. Also, most optimization algorithms 
minimize the loss function converge faster when variables are 
of the same scale. The method of scaling used on this data set is 
standardization. The raw scores (of the encoded data) are 
converted to standard scores by subtracting the mean of each 
variable from the raw score of each observation and then 
dividing the difference by the standard deviation of the 
variable. By doing so, the variables are transformed to have a 
mean of zero and a unit variance. The standardized value, Z, of 
each score of each variable is given by (5): 

 
_
)/(Z X X σ= −     (5) 

where,  6 is the mean of the variable, X is the encoded score of 
each observation of a variable and σ is its standard deviation.  
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TABLE II.  VARIABLE ENCODING 

Variable Variable Name Code Variable Variable Name Code 

 Day of Crash   Lighting condition  

X1 Monday 1-Present, 0-Otherwise X26 Dark 1-Present, 0-Otherwise 

X2 Tuesday 1-Present, 0-Otherwise X27 Dark Lighted 1-Present, 0-Otherwise 

X3 Wednesday 1-Present, 0-Otherwise X28 Daylight 1-Present, 0-Otherwise 

X4 Thursday 1-Present, 0-Otherwise  Weather Condition  

X5 Friday 1-Present, 0-Otherwise X29 Clear 1-Present, 0-Otherwise 

X6 Saturday 1-Present, 0-Otherwise X30 Rain 1-Present, 0-Otherwise 

X7 Sunday 1-Present, 0-Otherwise X31 Snow 1-Present, 0-Otherwise 

 Time of Day  X32 Traffic Condition 0-Low, 1-Medium, 2-High 

X8 A.M. Peak (06:00 – 10:00) 1-Present, 0-Otherwise  Traffic Control Type  

X9 Off Peak (10:00 – 15:00) 1-Present, 0-Otherwise X33 Stop 1-Present, 0-Otherwise 

X10 P.M. Peak (15:00 – 19:00) 1-Present, 0-Otherwise X34 Yield 1-Present, 0-Otherwise 

X11 Evening (19:00 – 00:00) 1-Present, 0-Otherwise X35 None 1-Present, 0-Otherwise 

X12 Night (0000 – 0600) 1-Present, 0-Otherwise  Contributing Circumstances of Driver 1  

 Quadrant  X36 No Violation D1 1-Present, 0-Otherwise 

X13 NW 1-Present, 0-Otherwise X37 Alcohol/ Drug Use D1 1-Present, 0-Otherwise 

X14 SW 1-Present, 0-Otherwise X38 Speeding D1 1-Present, 0-Otherwise 

X15 NE 1-Present, 0-Otherwise X39 STOP/ YIELD Sign Violation D1 1-Present, 0-Otherwise 

X16 SE 1-Present, 0-Otherwise X40 Improper Maneuvering D1 1-Present, 0-Otherwise 

X17 BN 1-Present, 0-Otherwise  Contributing Circumstances of Driver 2  

 Type of Collision  X42 No Violation D2 1-Present, 0-Otherwise 

X18 Right Angle 1-Present, 0-Otherwise X43 Alcohol/ Drug Use D2 1-Present, 0-Otherwise 

X19 Left Turn 1-Present, 0-Otherwise X44 Speeding D2 1-Present, 0-Otherwise 

X20 Right Turn 1-Present, 0-Otherwise X46 Improper Maneuvering D2 1-Present, 0-Otherwise 

 Road Surface Condition  X47 Distraction D2 1-Present, 0-Otherwise 

X21 Wet 1-Present, 0-Otherwise    

X22 Dry 1-Present, 0-Otherwise X48 Age of Driver 1 1-Present, 0-Otherwise 

 Street Lighting  X49 Age of Driver 2 1-Present, 0-Otherwise 

X23 Light Off 1-Present, 0-Otherwise X50 Gender of Driver 1 0-Female, 1-Male 

X24 Light On 1-Present, 0-Otherwise X51 Gender of Driver 2 0-Female, 1-Male 

X25 None 1-Present, 0-Otherwise Y1 Injury Severity 0-No Injury, 1-Injury 

 

G. Development of Models  

The process of classification by ANN is an iterative process 
of weight adjustments based on information flow that mimics 
the functioning of neurons in the human brain. The steps below 
describe in detail how models for crash injury severity 
classification were developed using ANN: 

• Selection of network architecture. 

• Training of neural network. 

• Testing and evaluation of model. 

1) Selection of Network Architecture 

The network architecture was first set up. A multi-layer 
perceptron (MLP) feedforward ANN was adopted to develop 
classification models. An MLP consists of at least three layers: 
an input layer, hidden layer(s) and an output layer. Each layer 
consists of nodes or neurons. The neurons of each layer are 
interconnected with those of the succeeding layer. Also, the 
neurons of the hidden and output layers are embedded with 
nonlinear activation functions. The MLP ANN architecture 
used in this research consists of an input layer with 44 neurons 
(each neuron represents each of the input variables, Xi in Table 
II) and an output layer with 1 neuron, which is the target or 
dependent variable, Y. The number of hidden layers and 
neurons varied for several iterations until the optimal numbers 
of hidden layers and neurons which produced the best model 

were obtained. Figure 4 shows the MLP ANN architecture used 
in developing the model. 

 

 
Fig. 4.  MLP ANN 

2) Training of Neural Network 

Training of the neural network by backward propagation 
was carried out in the following sequence: 

• Presentation of training dataset to the network: The training 
dataset was imported into the network to commence 
training. The vector of independent variables was fed into 
each input neuron connected to neurons of the first hidden 
layer. The training process was initialized by randomly 
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selecting weights for all interconnections between the 
neurons of the input and hidden layers. 

• Forward Computation: The forward propagation was then 
implemented by multiplying the weights with the values of 
the input neurons and the sum products are stored in the 
corresponding neurons of the hidden layer. The weighted 
sums are subsequently transferred into an activation 
function and based on the output of the functions, the 
neuron is either activated or not. Mathematically this can be 
expressed as: 

789 =	∑ ;8�9 		�
(9'�)<

�=�     (6) 

�89 =	ф��78�     (7) 

where, 789  is the weighted sum in jth neuron of the lth hidden 

layer, ;8�9  is the weight coefficient of the jth neuron of the lth 
layer that is fed from the ith neuron in layer l-1, 	�

(9'�)
 the 

output of th i-th neuron in the previous layer l-1, �8  is the 
output of the of the jth neuron in layer l-1, ф�  is the activation 
function which is a rectilinear unit function in the hidden layers 
and a sigmoid function in the output layer. Hence for the last 
layer (output layer) l=L, 

�8?(@) = 	AB		     (8) 

where, AB is the output of the n-th iteration. 
• Computation of error: The error of the jth neuron of the nth 

iteration is then computed as 

C8(@) = 	 D8(@) −	AB(@)		¨   (9) 

where, D8 is the target output. 
• Backward computation: The weights in the network are 

adjusted based on a local gradient, σ, which is a function of 
the error, e, and computed as follows: 

E89(@) = C8?(@)	фF G78?(@)H   (10a) 

for neuron j in the output layer L, and 

E89(@) = C8?фF G789(@)H∑ EI
(9��)(@);I8

(9��)(@)I  (10b) 

for neuron j in the hidden layer L, where, k is the succeeding 
neuron in layer l+1 and фF(·) is the derivative of the function 
ф(·). The weights in the network are then adjusted by the given 
relation: 

;8�9 (@ + 1) = 	;8�9 (@)B + 	KL;8�9 (@)B(@ − 1)M + 	NE89(@)��(9'�)(@) (11) 

where η is the learning-rate parameter and α is the momentum 

constant. 

• Iteration: The procedures in the three previous steps are 
repeated for batches of 3 observations per iteration until the 
stopping criteria of 100 epochs is met. Figure 5 illustrates 
the training process. 

3) Model Testing and Evaluationl 

After the training of the network for the required number of 
epochs (100), the model was tested using the test dataset. The 
accuracy of the model was evaluated by the confusion matrix. 

The number of hidden layers and neurons in the network 
architecture was varied and the training process was repeated. 
This iterative process was done until the model with the best 
performance was achieved. 

 

 
Fig. 5.  ANN training process 

4) Model Evaluation 

The performance of each of the models was assessed using 
the test dataset. The results were then evaluated by using the 
data generated by a confusion matrix (CM). A CM contains 
information about actual and predicted classifications done by a 
classification system. Each row of the CM represents the 
instances of an actual class and each column represents the 
instances of a predicted class. Table III shows the confusion 
matrix for a two-class classifier. 

TABLE III.  CONFUSION MATRIX 

Total No. of 

Observations 

Predicted 

Negative Positive 

Actual 
Negative True Negative (TN) False Positive (FP) 

Positive False Negative (FN) True Positive (TP) 

 
The entries of the CM are defined as follows: True Positive 

(TP) instances are positive and correctly classified as positive, 
True Negative (TN) instances are negative and correctly 
classified as negative, False Positive (FP) instances are 
negative but wrongly classified as positive, and False Negative 
(FN) instances are positive but wrongly classified as negative. 
Based on the CM, the following measures were computed to 
evaluate the models developed. 

• Accuracy (AC): The accuracy is the proportion of the total 
number of predictions that were correctly classified. It is 
computed as: 

AC=(TN+TP)/(TN+FP+FN+TP)  (12) 

• Error Rate (ER): The error rate is the rate at which 
predictions will be misclassified: 

ER=1-AC     (13) 

• Sensitivity (S): It is the proportion of positive cases that 
were correctly identified: 

S=TP/(FN+TP)    (14) 
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• Precision (P): It is the proportion of the predicted positive 
cases that were correct: 

P=TP/(FP+TP)    (15) 

• F-measure (F): It is a measure of the accuracy of the test 
model computed using S and P. The value of F ranges from 
0 to 1, where 1 shows an excellent model and 0 shows a 
bad model. F- measure is calculated as:  

F=2(S·P)/(S+P)    (16) 

H. Analysis Software  

The classification models of all three machine learning 
techniques were developed by using the high-level general-
purpose programming language Python. Especifically, the 
Anaconda Python distribution was used. This is an open source 
distribution with standard and robust libraries for data 
processing, analysis and machine learning applications. The 
NumPy and Pandas libraries were imported to facilitate data 
preprocessing. Also, Tensorflow and Keras libraries were 
imported to develop the ANN models. In addition, the 
descriptive statistics of the data were obtained using IBM 
Statistical Software for Social Scientist (SPSS). 

IV. RESULTS 

A. Descriptive Statistics 

Tables IV and V present the descriptive statistics of the data 
set. The frequencies of categorical variables are presented in 
Table IV, while Table V presents the mean and standard 
deviation of the continuous variable Age. It can be observed 
from Table IV that the highest number of crashes (1,252) 
occurred during the off-peak period, from 10:00A.M. to 
3:00P.M., while the least number of crashes (176) occurred at 
night, between 12:00AM to 6:00AM. Most of the crashes 
occurred on Tuesdays, Wednesdays and Thursdays while 
Sundays recorded the least number of crashes. The Northwest 
quadrant of Washington D.C. recorded the highest number of 
crashes (1,167). Right-angle collision was the most frequent 
occurring crash type. Most of the crashes occurred under 
daylight, clear weather and light level traffic conditions. 
Though most crashes were as a result of no violation on the 
part of one or both drivers, distracted driving and Stop/Yield-
sign violation were also reported as comparatively high 
contributing circumstances. Among the drivers involved, 3,936 
were male and 2,678 were female. Of the 3,307 recorded 
crashes, 1,274 resulted in injury. It is observed that the rate of 
injury crashes was highest during the night (41.24%), on 
Fridays (41%), and in the northeast quadrant (40.44%). Most 
were right turn collisions (40.69%), absent street lights 
(39.52%), rainy weather (50.57%), under light traffic 
conditions (54.78%). Intersections controlled by Yield signs 
also recorded the highest rate (70.59%) of injury crashes. This 
is complemented by the fact that the highest rates of injury 
crashes were a result of at least one driver’s failure to comply 
with a Stop/Yield sign. Thus, the contributing circumstance 
which resulted in the highest rate (69.94%) is Stop/Yield sign 
violation. Crashes in which at least on driver was a female 
recorded the highest rate of injury crashes. A correlation 
analysis was conducted to investigate the relations between age 
and injury severity. The results are presented in Table VI. The 

Spearman’s Rho of -0.52 was found to be statistically 
significant (p=0.03). This implies that, the severity of a crash 
increased with decreasing age of drivers involved in the crash. 

TABLE IV.  CRASH FREQUENCIES 

No Factor Level 

Crashes 

Total Injury 
Non-

Injury 

Injury 

Rate (%) 

1 
Period of 

Day 

A.M. Peak 730 296 435 40.49 

Off Peak 1252 466 785 37.25 

P.M. Peak 776 298 478 38.4 

Evening 373 142 230 38.17 

Night 176 73 104 41.24 

2 Day of Week 

Monday 265 102 163 38.49 

Tuesday 566 228 338 40.28 

Wednesday 957 371 586 38.77 

Thursday 657 243 414 36.99 

Friday 400 160 240 40 

Saturday 261 90 170 34.62 

Sunday 201 80 122 39.6 

3 Quadrant 

Northwest 1,167 442 725 37.87 

Northeast 858 347 511 40.44 

Southwest 226 76 150 33.62 

Southeast 984 382 602 38.82 

Boundary 72 27 45 39.13 

4 
Type of 
Collision 

Right Angle 1,338 530 808 39.61 

Left Turn 1,217 438 779 39.61 

Right Turn 752 306 446 40.69 

5 
Street 

Lighting 
Condition 

Lights Off 2,503 967 1,536 38.63 

Lights On 680 258 422 37.94 

None 124 49 75 39.52 

6 
Lighting 
Condition 

Dark 757 15 727 2.02 

Dark (Lighted) 581 193 388 33.22 

Day Light 1,967 1,063 906 53.99 

7 
Weather 
Condition 

Clear 2,350 921 1,429 39.19 

Rain 609 308 301 50.57 

Snow 348 45 303 12.93 

8 
Traffic 

Condition 

Light 2,178 1,193 985 54.78 

Medium 808 71 737 8.79 

Heavy 321 71 737 8.79 

9 
Traffic 

Control Type 

STOP Sign 2,504 1,066 1,450 42.37 

YIELD Sign 604 132 55 70.59 

None 187 76 528 12.58 

10 
Gender of 
Driver 1 

Male 1,621 419 1,202 25.85 

Female 1,686 855 831 50.71 

11 
Gender of 
Driver 2 

Male 2,315 1,026 1,289 44.32 

Female 992 248 744 25 

12 
Contri. 

Circum. of 
Driver 1 

No Viloation 1,700 869 831 51.12 

Alcohol 159 0 159 0 

Distracted 682 122 560 17.89 

Speed 430 134 296 31.16 

STOP/YIELD 
Sign Violation 

310 148 162 47.74 

Improper 
Maneuver 

24 2 22 8.33 

13 
Contri. 

Circum. of 
Driver 2 

No Viloation 1,041 7 764 0.91 

Alcohol 160 0 160 0 

Distracted 996 408 588 40.96 

Speed 276 7 269 2.54 

STOP/YIELD 
Sign Violation 

672 470 202 69.94 

Improper 
Maneuver 

161 112 49 69.57 

14 
Injury 
Severity  

3,307 1,274 2,033 38.52 
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TABLE V.  DRIVER AGE STATISTICS 

Factor Mean Standard Deviation Min. Max 

Drivers Age 42.56 15.73 14 86 

TABLE VI.  AGE-INJURY SEVERITY CORELATION ANALYSIS 

Factor Test Statistic (Spearman’s Rho) P-value 

Age of Driver -0.52 0.03 
 

B. Spatial Distribution of Crashes  

This section presents the results of the spatial analysis of 
the crashes using ArcGIS Pro software program. The spatial 
analysis performed included the spatial distribution of crashes 
based on injury severity and a kernel density analysis for injury 
crashes. The spatial distribution and density of crashes are 
shown in Figures 6 and 7, respectively. Figure 7 shows that 
most of the crashes were located in the NW quadrant. This 
covers the downtown and central business district of 
Washington DC. Figure 7 also shows that higher densities of 
injury crashes are in the same region of Washington DC. 

 

 
Fig. 6.  Spatial distribution of crashes [source: ArcGISPro] 

 
Fig. 7.  Kernel density of injury crashes [source: ArcGISPro] 

C. Results of Classification of Crashes  

Twenty-five distinct ANN models were developed using 
the training dataset. Each model was trained with batches of 3 
observations per iteration until the stopping criteria of 100 
epochs was met. The performance of each model was then 
evaluated using the test data set (which constitutes of 25% of 
the total dataset). The performance of the models after training 
and testing are presented in Tables VII and VIII respectively. 

The Tables show the number of models explored and the 
structure of the neural network. The performance measures 
(accuracy, error rate, sensitivity, precision and F-measure) of 
each model were computed and are also presented. 

TABLE VII.  RESULTS OF TRAINING ANN 

Model 

Network Arch. 

AC ER S P F Hidden 

Layer No. 

No. of 

Neurons 

1 1 20 0.9181 0.0819 0.8995 0.8892 0.8943 

2 1 15 0.9032 0.0968 0.9162 0.8454 0.8794 

3 1 5 0.8649 0.1351 0.8366 0.8170 0.8267 

4 1 3 0.8573 0.1427 0.8461 0.7961 0.8203 

5 2 25-20 0.9585 0.0415 0.9455 0.9465 0.9460 

6 2 20-25 0.9472 0.0528 0.9435 0.9213 0.9322 

7 2 20-15 0.9512 0.0488 0.9874 0.8964 0.9397 

8 2 15-20 0.9258 0.0742 0.9539 0.8668 0.9083 

9 2 10-15 0.9157 0.0843 0.9529 0.8473 0.8970 

10 2 15-10 0.9302 0.0698 0.9445 0.8826 0.9125 

11 2 5-10 0.8722 0.1278 0.8785 0.8067 0.8411 

12 2 10-5 0.9060 0.0940 0.8953 0.8654 0.8801 

13 2 6-3 0.8685 0.1315 0.8628 0.8086 0.8349 

14 2 3-6 0.8597 0.1403 0.8440 0.8020 0.8224 

15 2 2-2 0.8427 0.1573 0.8304 0.7767 0.8026 

16 3 30-20-25 0.9516 0.0484 0.9832 0.9170 0.9490 

17 3 25-30-20 0.9689 0.0311 0.9204 0.9565 0.9381 

18 3 20-15-20 0.9402 0.0598 0.9916 0.8926 0.9395 

19 3 15-20-15 0.9404 0.0596 0.9644 0.8916 0.9266 

20 3 15-10-15 0.9293 0.0707 0.9738 0.8692 0.9185 

21 3 10-15-10 0.9310 0.0690 0.8995 0.8677 0.8833 

22 3 5-10-5 0.9115 0.0885 0.8859 0.8270 0.8554 

23 3 10-5-10 0.9102 0.0898 0.9414 0.8293 0.8818 

24 3 6-4-2 0.9159 0.0841 0.9058 0.8374 0.8702 

25 3 6-2-6 0.9237 0.0763 0.9058 0.8547 0.8795 
 

The accuracy, sensitivity, precision and F-measure (F) 
performance measures range from 0 to 1, with values closer to 
1 showing models with better performance measures and 
conversely values closer to 0 showing worse performance 
measures. In contrast, models with error rates (ER) closer to 0 
are better than models with error rate closer to 1. The results of 
the analysis in Table VII show that after the training of the 
models, the accuracy ranged from 84.87% to 96.89%. Model 
17 produced the best classification accuracy (96.89%) with a 
corresponding error rate of 3.11%, while Model 15 produced 
the worse accuracy (84.87%) with a corresponding error rate of 
15.73%. Model 7 had the highest sensitivity (S) measure, while 
Model 15 had the least sensitivity measure. With regards to the 
precision measure, Model 17 was the most precise (P) model 
with a precision of 0.9565, while Model 15 was the least 
precise one. Model 16 recorded the highest F-measure of 
0.9490, while the lowest F-measure was recorded by Model 6. 
The variation of performance measures with varying models is 
shown in Figure 8. Table VIII presents the results of evaluation 
of the trained models using the test data set. The results show 
that the accuracy (after testing) of the models ranged from 
76.54% to 85.62%. Model 22 produced the best classification 
accuracy (85.62%) with a corresponding error rate of 14.38%, 
while Model 6 produced the worse accuracy. Model 14 had the 
highest sensitivity measure, while Model 16 had the least 
sensitivity measure. With regards to the precision measure, 
Model 15 was the most precise model with a precision of 
0.7850, while Model 18 was the least precise model with a 
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precision of 0.6882. Model 15 recorded the highest F-measure 
of 0.7875, while the lowest F-measure was recorded by Model 
6. The variation of performance measures with varying models 
is shown in Figure 9. 

 

 
Fig. 8.  Variation of performance measures for training dataset using ANN 

TABLE VIII.  RESULTS OF TESTING ANN 

Model 

Network Arch. 

AC ER S P F Hidden 

Layer No. 

No. of 

Neurons 

1 1 20 0.8005 0.1995 0.7900 0.7200 0.7534 

2 1 15 0.8114 0.1886 0.7492 0.7587 0.7539 

3 1 5 0.7896 0.2104 0.7524 0.7164 0.7339 

4 1 3 0.8295 0.1705 0.7806 0.7781 0.7793 

5 2 25-20 0.7872 0.2128 0.7210 0.7256 0.7233 

6 2 20-25 0.7654 0.2346 0.7116 0.6900 0.7006 

7 2 20-15 0.7836 0.2164 0.7304 0.7147 0.7225 

8 2 15-20 0.7787 0.2213 0.7179 0.7112 0.7145 

9 2 10-15 0.7944 0.2056 0.7586 0.7224 0.7401 

10 2 15-10 0.7715 0.2285 0.7429 0.6890 0.7149 

11 2 5-10 0.8198 0.1802 0.7680 0.7656 0.7668 

12 2 10-5 0.7993 0.2007 0.7524 0.7339 0.7430 

13 2 6-3 0.8174 0.1826 0.7774 0.7561 0.7666 

14 2 3-6 0.8114 0.1886 0.8276 0.7233 0.7719 

15 2 2-2 0.8356 0.1644 0.7900 0.7850 0.7875 

16 3 30-20-25 0.8440 0.1560 0.6865 0.7252 0.7053 

17 3 25-30-20 0.8256 0.1744 0.7398 0.7024 0.7206 

18 3 20-15-20 0.8100 0.1900 0.8025 0.6882 0.7410 

19 3 15-20-15 0.8300 0.1700 0.7837 0.7163 0.7485 

20 3 15-10-15 0.8511 0.1489 0.7367 0.7460 0.7413 

21 3 10-15-10 0.8532 0.1468 0.7712 0.7546 0.7628 

22 3 5-10-5 0.8562 0.1438 0.7586 0.7586 0.7586 

23 3 10-5-10 0.8457 0.1543 0.7524 0.7385 0.7453 

24 3 6-4-2 0.8406 0.1594 0.8119 0.7379 0.7731 

25 3 6-2-6 0.8340 0.1660 0.7868 0.7233 0.7538 

 

 
Fig. 9.  Variation of performance measures for testing dataset using ANN 

 

V. DISCUSSION 

The study sought to develop classification models to predict 
injury severity of angle crashes involving two vehicles at 
unsignalized intersections using ANNs. A total of 3,307 
reported crashes from 2008 to 2015 were extracted from a 
crash database and used in the analysis. Of the total number of 
crashes, 1,272 resulted in injury and/or fatality, while the 
remaining 2,035 crashes were non-injury crashes. The spatial 
distribution of the crashes showed that the downtown area of 
Washington DC experienced the highest frequency of crashes. 
Also, most of the crashes occurred during off-peak periods and 
under light traffic conditions. Right angle collisions were the 
most frequent collision type. The combination of driver 
contributing circumstances which result in injury were 
Stop/Yield sign violation by one driver, and no violation on the 
part of the other driver.  

The accuracy of classification models developed using 
ANN generally tends to increase as the number of hidden 
layers increases. Models with higher accuracies were attained 
with three hidden layers. Model 22 was the most accurate 
(85.62%) for predicting injury severity of angle crashes at 
unsignalized intersections. This model has 3 hidden layers with 
5, 10, and 5 neurons respectively. The activation function in the 
hidden layers is the rectilinear unit function and the activation 
function in the output layer is the sigmoid function. The 
confusion matrix of this model is presented in Table IX. We 
can see that 51.5% of the crashes were correctly classified as 
non-injury crashes, while 10.3% were wrongly classified as 
injury crashes. Similarly, 29% of the crashes were correctly 
classified as injury crashes while 9.2% were wrongly classified 
as non-injury crashes. F-measure, is a combined measure for 
both precision and sensitivity. F-measures of the ANN models 
generally ranged between 0.7 and 0.8, and the higher values of 
F-measure were achieved with two hidden layers. Models 15 
and 22 are the most accurate ANN models for predicting injury 
severity of angle crashes at unsignalized intersections.  

TABLE IX.  CONFUSION MATRIX OF MODEL 22 

Total No. of Observations 
Predicted 

Negative Positive 

Actual 
Negative 431 77 

Positive 77 242 

 

VI. CONCLUSION AND RECOMMENDATION 

In conclusion, the most accurate ANN model for predicting 
the severity of an injury sustained in a crash is a model with 3 
hidden layers with 5, 10, and 5 neurons. The activation 
functions in the hidden and output layers are the rectilinear unit 
function and sigmoid function. This research explored the 
ANN machine learning technique. Future research can explore 
other techniques such as decision trees, K-nearest neighbors 
and linear discriminants. Also, other types of crashes can be 
explored at unsignalized intersections. Further, these analyses 
could be extended to signalized intersections. 
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