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Abstract—Remote sensing provides a synoptic view of the earth 

surface that can provide spatial and temporal trends necessary 

for comprehensive water quality (WQ) monitoring and 

assessment. This study explores the applicability of Landsat 8 

and regression analysis in developing models for estimating WQ 

parameters such as pH, dissolved oxygen (DO), total dissolved 

solids (TDS), total suspended solids (TSS), biological oxygen 

demand (BOD), turbidity, and conductivity. The input image was 

radiometrically-calibrated using fast line-of-sight atmospheric 

analysis (FLAASH) and then atmospherically corrected to obtain 

surface reflectance (SR) bands using FLAASH and dark object 

subtraction (DOS) for comparison. SR bands derived using 

FLAASH and DOS, water indices, band ratio, and principal 

component analysis (PCA) images were utilized as input data. 

Feature vectors were then collected from the input bands and 

subsequently regressed together with the WQ data. Forward 

regression results yielded significant high R2 values for all WQ 

parameters except TSS and conductivity which had only 60.1% 

and 67.7% respectively. Results also showed that the regression 

models of pH, BOD, TSS, DO, and conductivity are highly 

significant to SR bands derived using DOS. Furthermore, the 

results of this study showed the promising potential of using RS-

based WQ models in performing periodic WQ monitoring and 

assessment. 

Keywords-spectral; reflectance; radiance; water quality 

modelling; geoinformatics 

I. INTRODUCTION  

Water is among the most important resources. However, 
water bodies are under acute seasonal scarcity due to the 
increased rate of human intervention and human-induced 
modification of natural processes [1]. Periodic monitoring and 
assessment of water quality (WQ) help to develop management 
strategies to control surface water pollution [2]. Government-
sponsored WQ monitoring programs usually employ field 
measurements and collection of water samples for subsequent 
laboratory analysis in a traditional way. While such 
conventional approach to WQ monitoring data is accurate at a 
specific location and time, in most cases, it cannot provide 
enough information on overall WQ. Water monitoring data and 
reports in the Philippines usually only have point-specific 
datasets which lack spatiotemporal trends that are rather vital in 
the monitoring, assessment, and identification of water 

management strategies. Also, though this in-situ measurement 
offers high accuracy, it is not feasible to provide a 
simultaneous WQ database on a regional scale [3]. Fortunately, 
the emerging technologies of geoinformatics, particularly 
remote sensing (RS) and geographic information system (GIS), 
provide useful tools for a comprehensive WQ assessment and 
management. Remote sensing datasets offer a synoptic view of 
ongoing earth surface processes which allows an evaluation of 
the pressures placed on aquatic ecosystems [4]. Scientific 
findings towards understanding WQ by employing RS 
techniques are highly effective. Such techniques are valuable in 
monitoring upstream land use and land cover changes and 
spread [5], deriving RS empirical models to aid WQ 
monitoring and assessment[2, 6-8], and mapping the spatial 
distribution of WQ parameters using GIS [2, 9]. Moreover, 
satellite images have been used successfully in water 
management protocols such as to conduct inventory and water 
balance assessment [10-12], to assess flood areas [13], and for 
WQ change detection and monitoring [14, 15]. 

There is no restriction on obtaining and using Landsat 
satellite imagery [16]. Landsat satellite series are widely used 
to establish relationships between WQ parameters of surface 
waters and spectral reflectance [17-20]. Authors in [21] showed 
that satellite-based regression models can be derived using 
images acquired with a maximum of ±15 days offset from the 
date of in-situ water sampling. However, there are 
recommendations of a narrower time difference of ±5 days 
[22], ±4 days [23], ±3 days [21], and ±1 day [22, 24] between 
the sampling date and the acquisition date of the image. For 
this study, an offset of ±5 or lesser days is set in the selection of 
satisfactory (less cloud cover) satellite images. Regression 
analysis is one of the widely used methods to determine 
spectral reflectance and WQ parameter relationship by 
selecting derived regression models with high R2 value [6, 16, 
19, 25]. A wide range of studies proved the potential of using 
satellite datasets in deriving WQ models which include 
physicochemical water parameters [18, 24, 26], nutrient 
concentrations [20], and heavy metals [27]. For instance, 
authors in [17] applied regression modelling to develop 
algorithms for estimating TSS, pH, BOD, and chlorophyll-a. 
Hence, in this study, WQ algorithms are developed using a 
combined regression and remote sensing approach. The 
objective of this study is to determine the potential of using 
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Landsat 8 images combined with field measurements to predict 
selected WQ indicators. To derive WQ regression models, this 
study utilizes various raw, pre-processed, and post-processed 
Landsat 8 bands and in-situ WQ data and employs regression 
analysis. 

II. STUDY AREA 

Tubay River is one of the principal rivers in Agusan del 
Norte, Philippines which is classified as a Class A water body. 
Its headstream is the main outlet of Lake Mainit, and the river 
traverses within the municipalities of Jabonga, Santiago, and 
Tubay. There are two major tributaries of the river, one at its 
upstream portion and the other at the mid-downstream part. 
The river plays a vital role in the economic development of the 
said municipalities, as manifested by its diverse uses that 
include irrigation and other agricultural uses, fisheries, 
livestock production, and various domestic uses and tourism. 
The river is also a receptor of domestic solid and liquid wastes 
and other non-point sources of polluted waters [28]. Figure 1 
shows the location of Tubay River and the terrain within the 
study area. 

 

 

Fig. 1.  The study area showing the location of Tubay, Agusan del Norte 

and the location of EMB water quality monitoring points. 

III. MATERIALS AND METHODS 

The 2014-2015 WQ monitoring data of the Environmental 
Management Bureau (EMB) were utilized in this study. To 
explore the relationships between WQ indicators and spectral 
data, we employed the latest addition in the Landsat series 
which is the Landsat 8 OLI. Landsat 8 images with acquisition 
dates with a ±5-day difference to the water sampling dates of 
the EMB were downloaded through USGS Earth Explorer. The 
general methodology applied in this study is shown in Figure 2. 

 

 

Fig. 2.  High level abstraction of processes and data flow. 

 

Fig. 3.  The procedure flow for pre-processing the Landsat 8 OLI image. 

In the pre-processing part, we employed radiometric 
correction to remove errors in the raw pixel values (digital 
numbers, DN) of the Landsat image and convert the pixels into 
radiance or reflectance using the FLAASH tool. A detailed 
procedure of transforming DN into at-sensor radiance and 
surface reflectance is covered entirely in [29]. The general form 
of the equation for computing TOA Reflectance (RTOA) is 
shown in (1) and (2):  

𝐿′𝜆 =  𝑀𝜌 ∗ 𝑄𝐶𝐴𝐿 +  𝐴𝜌   (1) 

𝐿𝜆 =  𝐿′𝜆 cos 𝜃⁄
𝑆𝐸

    (2) 
 

where L΄λ is TOA spectral radiance, QCAL is the quantized 
calibrated pixel values in DN, Mρ is the band-specific 
multiplicative rescaling factor, band-specific Aρ is the additive 
scaling factor, θSE is the local sun elevation angle, and Lλ is the 
TOA reflectance. 

Then, atmospheric correction was employed to transform 
TOA radiance or reflectance bands into surface reflectance 
using two types of pre-processing methods to investigate which 
method is the most appropriate for extracting RS-based WQ 
models. The first method is to apply the FLAASH atmospheric 
correction [30] automatically while the second method employs 
DOS [31]. Band math computations were finally applied to 
surface reflectance bands using the two approaches to complete 
the post-FLAASH and post-DOS procedure. Then the raw, 
radiance and reflectance images were used to perform PCA and 
band ratios for deriving two water indices. To enhance the 
spectral appearance of water bodies, modified normalized 
difference water index (MNDWI) and normalized difference 
water index (NDWI) variants were derived using (3)-(5). Band 
ratio (BR) was also obtained using Band 1 and Band 5 by 
applying (6): 

𝑀𝑁𝐷𝑊𝐼 =  (𝜌3 − 𝜌6) (𝜌3 +  𝜌6)⁄   (3) 

𝑁𝐷𝑊𝐼1 =  (𝜌3 − 𝜌5) (𝜌3 + 𝜌5)⁄   (4) 

𝑁𝐷𝑊𝐼2 =  (𝜌5 −  𝜌6) (𝜌5 + 𝜌6)⁄   (5) 

𝐵𝑅 =  𝜌1 𝜌5⁄      (6) 

where 𝜌1  is the ultra-blue (coastal/aerosol) band, 𝜌3  is the 
green band, 𝜌5 is the NIR band, and 𝜌6 is the SWIR 1 band of 
the Landsat 8 OLI image.  
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All images were then resized to contain only the region of 
Tubay River as study area. We then extracted feature vectors 
from each raw image and transformed satellite images using 
the geographic locations of the monitoring stations of EMB. 
Then, all pixel values were organized and tabulated to be used 
for regression analysis. During the regression, two fitting 
methods were applied using the SPSS 16.0 software, the enter 
method and the forward (step-up) method. In the first method, 
all variables with high correlation to the WQ parameter are 
fitted in the regression model while the forward method only 
includes variables that explain a significant amount of 
additional variance in the model and output all possible 
regression models with significant R2 values. 

IV. EXPERIMENTAL RESULTS 

Quarterly WQ monitoring data for the years 2014 and 2015 
were available during this study. From these datasets, only 7 
physical WQ parameters were considered during this study: 
pH, DO, BOD, TSS, TDS, conductivity and turbidity. Among 
the available satellite images in the study area, only the Landsat 
8 OLI images acquired during April 19, 2015 were utilized 
since they qualified the ±5 day difference and the minimal 
cloud cover criteria. Hence, the EMB April 14, 2015 WQ data 
(shown in Table I) were utilized for statistical RS modelling. A 
total of 7 raw bands, 7 pre-processed bands using FLAASH, 7 
pre-processed bands using DOS, 18 principal component (PC) 
bands, 3 water indexes, and 1 BR were used in this study. This 
results in a total of 43 variables to be considered in the 
regression analysis. Statistical results showed that 6 variables 
or image bands were found to be highly correlated to all 
physical under consideration WQ parameters. These variables 
include mostly image bands atmospherically corrected using 
DOS. These variables were fitted in the respective WQ 
regression models using the enter method in SPSS which all 
resulted to an R2 value of 100%. Table II shows all the 
regression models (enter method) derived using various RS 
datasets.  

TABLE I.  WATER QUALITY DATA OF TUBAY RIVER, APRIL 14, 2015 

Stn. 
DO 

(mg/L) 

BOD 

(mg/L) 

TSS 

(mg/L) 

TDS 

(mg/L) 
pH 

Conductivity 

(mS/cm) 

Turbidity 

(NTU) 

1 7.3 0.7 5 1,510 7.65 2.25 1.21 

2 7.8 0.7 4 112 7.93 1.72 81.6 

3 8.1 0.8 8 116 7.95 0.165 85.3 

4 8.0 0.8 24 86 8.20 0.125 92.5 

5 7.4 0.6 12 92 8.03 0.140 66.3 

6 7.4 0.7 0.0 97 8.03 0.149 51.0 

7 7.6 0.5 48 97 8.14 0.149 55.3 
 
 

Source: EMB (2015) 

 

The first run of forward regression analysis did not output a 
statistical model for DO and turbidity. In this method, out of 
the 6 significant variables identified in previously, only 3 were 
found to be substantial in the derived WQ regression models. 
These are the BR, PC4 of surface reflectance bands calibrated 
using DOS (PC4_SR2), and the PC5 of surface reflectance 
bands calibrated using FLAASH (PC5_SR1). Forward 
regression analysis results showed that the models for TDS, 
BOD, and pH yielded the highest R2 values of 96.8%, 89.3%, 
and 89.0%, respectively. The resulting regression models also 
showed the strong association of BR to water pH, TDS, and 

conductivity. Also, the PC reflectance band 4 is highly 
significant to both BOD and TSS regression models, although 
the R2 value of the TSS regression model is only 60.1%. 
Moreover, forward regression analysis for TDS resulted in two 
models. The first model with the highest R2 value of 96.8% has 
BR and PC1_SR1 as predictors while the second model shows 
that TDS can also be estimated using only BR as a predictor 
with an R2 value of 77.6%.  

TABLE II.  REMOTE SENSING-BASED REGRESSION MODELS (ENTER 

METHOD) FOR SELECTED WQ PARAMETERS. 

Model 

No. Dependent Predictors and coefficients R2 % 

1 DO 
7.961+65.873×PC5_SR1-

38.644×SR2B1+58.405×PC4_SR2+1.56

0×NDWI2-1.378×BR+9.507×RTOAB7 

100 

2 pH 
8.128+42.442×PC5_SR1-

13.18×SR2B1+4.891×PC4_SR2+0.943×

NDWI2-0.754×BR+7.343×RTOAB7 

100 

3 BOD 

0.285+10.063×PC5_SR1-

7.258×SR2B1+32.07×PC4_SR2+0.573×
NDWI2+0.017×BR+3.089×RTOAB7 

100 

4 TSS 

15.184+7311.307×PC5_SR1-

2681.941×SR2B1-
3467.17×PC4_SR2+168.64×NDWI2+2

1.174×BR+1525.531×RTOAB7 

100 

5 TDS 

75475.527×PC5_SR1-

23045.975×SR2B1-
55739.039×PC4_SR2+2118.343×NDWI

2+4404.119×BR+24777.549×RTOAB7 

100 

6 Turbidity 

183.783+3031.118×PC5_SR1-
480.841×SR2B1+4903.518×PC4_SR2-

64.447×NDWI2-258.509×BR-

681.372×RTOAB7 

100 

7 Conductivity 

2.726+18.552×PC5_SR1+33.248×SR2B
1-110.85×PC4_SR2–

12.795×NDWI2+2.775×BR-
19.44×RTOAB7 

100 

SR1=surface reflectance bands calibrated using post-FLAASH, SR2=surface reflectance bands 

calibrated using post-DOS, B#=band number, PC=principal component 

 

Then, we evaluated back the WQ datasets for DO and 
turbidity since the first run of the forward regression analysis 
did not yield models for these WQ parameters. The WQ data in 
Table I showed that it has the lowest level (1.21) of turbidity at 
Station 1 which is located at the mouth of the river. This 
suggests low flows during the measurement and that the water 
was relatively clear. This situation is also evident even 5 days 
after the WQ measurement as shown in the zoomed-in images 
(true color image and histogram-stretched true color image) 
from the Landsat (Figure 4). At the mouth of the river, we can 
observe in Figure 4(a) that the pixels depict greenish color 
while it is light blue in Figure 4(b). In the upper stream of the 
river, turbid water appears dark (near black) in the normal RGB 
image. On the other hand, it is very dark blue in the enhanced 
RGB image applied with histogram equalization.  

TDS level at Station 1 is extremely high and exceeds the 
1000mg/L minimum standard. This TDS concentration may 
indicate pollution and may pose danger to aquatic life. The 
TDS is a measure of dissolved solid materials in the river water 
that includes salts, some organic materials, and a wide range of 
other things from nutrients to toxic substances [32]. Despite the 
high concentration of TDS at Station 1, its DO level passed the 
minimum criteria of DENR, indicating that there is enough 
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amount of oxygen dissolved in the water to support aquatic life. 
The very extreme turbidity and TDS values in Station 1 may 
indicate a different scenario since Station 1 is located at the 
mouth of the river. To avoid any uncertainties during the 
modelling process, Station 1 data for turbidity and TDS were 
excluded. Considering the relationship between WQ 
parameters, we also included them in each run of the regression 
analysis. Indeed, a new set of regression models were derived 
for DO and Turbidity. Table III shows all the derived RS-based 
models using regression analysis (forward method) including 
DO and turbidity. 

 

 
(a) 

 
(b) 

Fig. 4.  The subset or zoomed in images of Landsat 8 acquired April 19, 

2015, showing the downstream river: (a) true color RGB image (b) enhanced 

true color RGB composite image by employing histogram equalization. 

 

TABLE III.  REMOTE SENSING BASED REGRESSION MODELS 

(FORWARD METHOD) FOR SELECTED WQ PARAMETERS. 

Model 

No. 
Dependent 

Predictors and 

coefficients 
R2 % 

Standard 

estimate error 

1 DO 

7.446+0.008× 

Turbidity-

11.59×SR2B1 

88.5 0.828 

2 pH 8.339-0.827×BR 89.0 0.060 

3 BOD 
0.382+28.746×PC4

_SR2 
90.0 0.041 

4 TSS 
53.257-

3633.719×PC4_SR2 
60.1 11.55 

5 TDS 
90.124-

1911.396×PC6_SR1 
84.6 5.113 

6 TDS 

84.734-

3465.448×PC6_SR1+4
07.034×PC3_SR2 

99.5 1.025 

7 Turbidity 

37.985×DO+4742.646

×PC5_SR1-

295.309×PC3_SR1-
42.973×PC2_SR2-

220.624 

100.0 0.026 

8 Turbidity 

39.985×DO+4548.48

6×PC5_SR1-

213.951×PC3_SR1-

228.288 

99.8 1.051 

9 Turbidity 
36.176×DO+3334.53
6×PC5_SR1-198.601 

96.5 4.076 

10 Conductivity 3.682×BR-0.882 67.7 0.570 

SR1=surface reflectance bands calibrated using post-FLAASH, SR2=surface reflectance bands 

calibrated using post-DOS, B#=band number, PC=principal component 
 

The DO regression model yielded an R2 of 88.5% with 
turbidity and surface reflectance Band 1 derived using post-
DOS method (SR2 B1) as predictors, while the regression for 
turbidity resulted in 3 models with very high R2 of 100%, 
99.8%, and 96.5%, respectively. The regression model for 

turbidity with highest R2=100% has 4 predictors which are PC 
3 and PC 5 of surface reflectance bands corrected using post-
FLAASH method (PC3_SR1 and PC5_SR1), DO, and PC 2 of 
surface reflectance bands corrected using DOS method 
(PC2_SR2). With these regression modelling results for 
turbidity and DO, the significant predictors that were included 
in the models confirmed the high correlations found between 
turbidity and DO. As observed in Table II, using enter 
regression, 4 of the most significant variables are band images 
applied with post-DOS correction and its derivatives (e.g., 
PCA, NDWI2, and BR). In particular, these are the surface 
reflectance Band 1, PC Band 4, NDWI2, and BR and then, 2 
more bands, TOA Reflectance Band 7 and PC 5 of surface 
reflectance, using Post-FLAASH (PC5_SR1). This implies that 
the surface reflectance bands processed using post-DOS 
correction, the TOA Reflectance Band 7, and PC5_SR1 are 
practically useful in developing WQ algorithms using enter 
regression analysis. However, in Table III, when forward 
regression analysis was employed, only 1 to 2 image bands 
were found to be significant for each RS-based WQ model. 
Two of the 6 significant bands (i.e. TOA Reflectance Band 7 
and the NDWI2) using enter regression were already not 
included as predictors in the models determined by forward 
regression analysis. It can be observed that the resulting 
predictors of each regression model can be easily associated 
with the type of calibration method used. For example, the RS-
based regression models for pH, BOD, TSS, DO, and 
conductivity involve predictors representing image bands 
derived using post-DOS calibration. The second regression 
model for TDS, on the other hand, involved surface reflectance 
bands derived from both post-DOS and post-FLAASH. While 
TDS (1st model) and turbidity regression models include image 
bands derived using post-FLAASH method. 

Regarding the goodness of fit, WQ models obtained 
remarkable R2 values except TSS and conductivity with 60.1% 
and 67.7%, respectively. This proves the potential of 
employing image processing and regression modelling in 
deriving RS-based WQ models. We compared the performance 
of the developed models in this study to other regression 
models derived from remote sensing data with moderate 
resolution like Landsat series [14, 16, 19, 23], and from other 
satellite sensors with high resolutions like Worldview-2 [18] 
and ASTER [26]. We also took note of the atmospheric 
correction method and other post-processing techniques. As 
observed in Table IV, the R2 values of the algorithms 
developed in this study for pH, turbidity, TSS, and BOD are 
better than the ones from the other models presented in 
previous studies using Landsat images. This holds true even 
when our developed models for DO, pH, and TSS are 
compared to regression models based on a 2-meter resolution 
Worldview-2 image. It is interesting to note that the turbidity 
model performance of this study is comparable to the model 
derived using ASTER with a 15-meter resolution. Overall, we 
can conclude that the developed regression models using DOS-
corrected Landsat 8 bands can reliably estimate water 
parameters such as DO, pH, TSS, and BOD, while TDS and 
turbidity can be estimated using FLAASH-corrected Landsat 8 
images. This comparison result suggests that a free satellite 
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image like Landsat series can be a reliable input image if the 
right pre-processing method is employed. 

TABLE IV.  COMPARISON OF REGRESSION MODEL PERFORMANCES 

BETWEEN WQ MODELS  

Dependent 

Variable 

Processing 

method(s) 

Model Performance 
Reference 

Predictors R2 % 

DO 

DOS Turbidity and B1 88.5 This study 

DOS B1, B3, B4, B5, B7 93.0 [16] 

N/A B3, B6, B7 44.0 [18] 

pH 

DOS, Band Ratio B1, B5 89.0 This study 

DOS B3, B4, B5, B6 81.53 [16] 

FLAASH B8, B9 95.06 [26] 

N/A B3, B4, B5, B6, B7 60.7 [18] 

Turbidity 

FLAASH, PCA DO, PC3, PC5 99.8 This study 

DOS B4, B5 64.2 [16] 

FLAASH B2, B3, B4, B5 98.6 [23] 

FLAASH B1, B2, B3 99.8 [26] 

DOS B1, B2, B3 46.1 [19] 

Conductivity 

DOS, Band 

Ratio 
B1, B5 67.7 This study 

DOS B2, B3, B4, B6 69.9 [16] 

FLAASH B3, B4, B8 99.6 [26] 

TSS 

DOS, PCA PC4 60.1 This study 

DOS B1, B2, B3 24.4 [19] 

FLAASH B2, B3, B4, B5 98.8 [23] 

N/A B1, B3, B5 B6, B7 38.8 [18] 

TDS 

DOS/FLAASH, 
Band Ratio, PCA 

B1, B5, PC2_SR1 96.8 This study 

FLAASH B3 99.7 [26] 

BOD 

DOS, PCA PC4 89.3 This study 

DOS B1, B2, B3 70.7 [14] 

N/A B2, B6, B7 47.6 [18] 
 

V. CONCLUSION AND RECOMMENDATIONS 

This study aimed to develop RS-based models of Landsat 8 
images by employing regression analysis. The results of this 
study showed a strong correlation between in-situ WQ readings 
and RS-based datasets in Tubay River. Forward regression 
analysis results showed that the models for turbidity, TDS, DO, 
BOD, and pH yielded the highest R2 values of 99.3%, 96.8%, 
94.1%, 89.3%, and 89.0%, respectively, while TSS and 
conductivity have R2 values of only 60.1% and 67.7% 
respectively. These models will be beneficial in estimating WQ 
parameters and predicting seasonal changes. This study 
demonstrated promising results in estimating WQ parameters 
in which if further validated with multi-temporal datasets, can 
be considered for the development of an operational RS-based 
monitoring and assessment system that can be escalated at a 
regional and national scale. From the model comparison 
results, this study can conclude that it is not necessary to 
acquire high resolution and commercial satellite images since a 
free satellite image like Landsat series can be a reliable input 
image if the right pre-processing method is employed. We 
further suggest that the government’s WQ monitoring 
campaigns will be planned to coincide with the dates of 
Landsat image acquisitions in the respective areas. In this way, 
more water characterization data with matching satellite images 
can be utilized in deriving more reliable empirical WQ models, 
as well as in the model validation. 

 

ACKNOWLEDGMENT 

This paper was supported by an Engineering Research and 
Development for Technology Grant of the Philippine’s 
Department of Science and Technology. Authors would like to 
thank James Earl B. Cubillas for his technical assistance and 
the Center for Resource Assessment, Analytics, and Emerging 
Technologies of Caraga State University for providing a 
workspace to download and pre-process the Landsat images. 

REFERENCES 

[1] F. Mushtaq, A. C. Pandey, “Assessment of land use/land cover dynamics 
vis-a-vis hydrometeorological variability in Wular Lake environs 
Kashmir Valley, India using multitemporal satellite data”, Arabian 
Journal of Geosciences, Vol. 7, No. 11, pp. 4707-4715, 2014 

[2] F. Mushtaq, M. G. Nee Lala, A. C. Pandey, “Assessment of pollution 
level in a Himalayan Lake, Kashmir, using geomatics approach”, 
International Journal of Environmental Analytical Chemistry, Vol. 95, 
No. 11, pp. 1001-1013, 2015 

[3] M. Gholizadeh, A. Melesse, L. Reddi, “A Comprehensive Review on 
Water Quality Parameters Estimation Using Remote Sensing 
Techniques”, Sensors, Vol. 16, No. 8, p. 1298, 2016 

[4] S. J. Goetz, N. Gardiner, J. H. Viers, “Monitoring freshwater, estuarine 
and near-shore benthic ecosystems with multi-sensor remote sensing: An 
introduction to the special issue”, Remote Sensing of Environment, Vol. 
112, No. 11, pp. 3993-3995, 2008 

[5] J. Kibena, I. Nhapi, W. Gumindoga, “Assessing the relationship between 
water quality parameters and changes in landuse patterns in the Upper 
Manyame River , Zimbabwe”, Physics and Chemistry of the Earth, Parts 
A/B/C, Vol. 67-69, pp. 153-163, 2014 

[6] E. Alparslan, C. Aydoner, V. Tufekci, H. Tufekci, “Water quality 
assessment at Omerli Dam using remote sensing techniques”, 
Environmental Monitoring and Assessment, Vol. 134, No. 1-3, p. 391, 
2007 

[7] D. G. Hadjimitsis, M. G. Hadjimitsis, L. Toulios, C. Clayton, “Use of 
space technology for assisting water quality assessment and monitoring 
of inland water bodies”, Physics and Chemistry of the Earth, Parts 
A/B/C, Vol. 35, No. 1-2, pp. 115-120, 2010 

[8] V. Markogianni, D. Kalvas, G. P. Petropoulos, E. Dimitriou, “An 
appraisal of the potential of Landsat 8 in estimating chlorophyll-a, 
ammonium concentrations and other water quality indicators”, Remote 
Sensors, Vol. 10, No. 7, pp. 1-22, 2018 

[9] Y. A. El-Amier, A. A. Elnaggar, M. A. El-Alfy, “Evaluation and 
mapping spatial distribution of bottom sediment heavy metal 
contamination in Burullus Lake, Egypt”, Egyptian Journal of Basic and 
Applied Sciences, Vol. 4, No. 1, pp. 55-66, 2017 

[10] A. S. Jasrotia, A. Majhi, S. Singh, “Water Balance Approach for 
Rainwater Harvesting using Remote Sensing and GIS Techniques, 
Jammu Himalaya, India”, Water Resources Management, Vol. 23, No. 
14, pp. 3035-3055, 2009  

[11] P. H. Gowda, J. L. Chavez, P. D. Colaizzi, S. R. Evett, T. A. Howell, J. 
A. Tolk, “ET mapping for agricultural water management: present status 
and challenges”, Irrigation Science, Vol. 26, No. 3, pp. 223-237, 2008 

[12] I. Klein, A. J. Dietz, U. Gessner, A. Galayeva, A. Myrzakhmetov, C. 
Kuenzer, “Evaluation of seasonal water body extents in Central Asia 
over thepast 27 years derived from medium-resolution remote sensing 
data”, International Journal of Applied Earth Observation and 
Geoinformation, Vol. 26, No. 1, pp. 335-349, 2014 

[13] C. Ye, “Extraction of water body in before and after images of flood 
using Mahalanobis distance-based spectral analysis”, Remote Sensing, 
Vol. 31, No. 4, pp. 293-302, 2015 

[14] Y. Wang, H. Xia, J. Fu, G. Sheng, “Water quality change in reservoirs of 
Shenzhen, China: detection using LANDSAT/TM data”, The Science of 
the Total Environment, Vol. 328, No. 1-3, pp. 195-206, 2004 

[15] R. Swain, B. Sahoo, “Improving river water quality monitoring using 
satellite data products and a genetic algorithm processing approach”, 



Engineering, Technology & Applied Science Research Vol. 9, No. 2, 2019, 3965-3970 3970  
  

www.etasr.com Japitana & Burce: A Satellite-based Remote Sensing Technique for Surface Water Quality Estimation DO NOT ALTER HEADER & FOOTER. THEY WILL BE COMPLETED DURING EDITING 

 

Sustainability of Water Quality and Ecology, Vol. 9-10, pp. 88-114, 
2017 

[16] L. C. Gonzalez-Marquez, F. M. Torres-Bejarano, A. C. Torregroza-
Espinosa, I. R. Hansen-Rodriguez, H. B. Rodriguez-Gallegos, “Use of 
LANDSAT 8 images for depth and water quality assessment of El 
Guajaro reservoir, Colombia”, Journal of South American Earth 
Sciences, Vol. 82, pp. 231-238, 2018 

[17] A. El-Zeiny, S. El-Kafrawy, “Assessment of water pollution induced by 
human activities in Burullus Lake using Landsat 8 operational land 
imager and GIS”, The Egyptian Journal of Remote Sensing and Space 
Science, Vol. 20, Suppl. 1, pp. S49-S56, 2017 

[18] A. M. El Saadi, M. M. Yousry, H. S. Jahin, “Statistical estimation of 
Rosetta branch water quality using multi-spectral data”, Water Science, 
Vol. 28, No. 1, pp. 18-30, 2014 

[19] A. Kulkarni, “Water Quality Retrieval from Landsat TM Imagery”, 
Procedia Computer Science, Vol. 6, pp. 475-480, 2011 

[20] V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou, “Analysis on 
the feseability of L8 for WQPs assessment”, International Journal of 
Environmental, Chemical, Ecological, Geological and Geophysical 
Engineering, Vol. 11, No. 9, pp. 906-914, 2017 

[21] E. Kontopoulou, P. Kolokoussis, K. Karantzalos, “Water quality 
estimation in Greek lakes from Landsat 8 multispectral satellite data”, 
European Water, Vol. 58, pp. 191-196, 2017 

[22] M. Waxter, Analysis of Landsat Satellite Data to Monitor Water Quality 
Parameters in Tenmile Lake, Oregon, MSc Thesis, Portland State 
University, 2014 

[23] T. S. Kapalanga, Assessment and Development of Remote Sensing 
Based Algorithms For Water Quality Monitoring in Olushandja Dam, 
North-Central Namibia, MSc Thesis, University of Zimbabwe, 2015 

[24] D. Barrett, A. Frazier, “Automated Method for Monitoring Water 
Quality Using Landsat Imagery”, Water, Vol. 8, No. 6, p. 257, 2016 

[25] V. Kumar, A. Sharma, A. Chawla, R. Bhardwaj, A. K. Thukral, “Water 
quality assessment of river Beas, India, using multivariate and remote 
sensing techniques”, Environmental Monitoring and Assessment, Vol. 
188, No. 3, p. 137, 2016 

[26] K. W. Abdelmalik, “Role of statistical remote sensing for Inland water 
quality parameters prediction”, The Egyptian Journal of Remote Sensing 
and Space Science, Vol. 21, No. 2, pp. 193-200, 2018 

[27] R. Swain, B. Sahoo, “Mapping of heavy metal pollution in river water at 
daily time-scale using spatio-temporal fusion of MODIS-aqua and 
Landsat satellite imageries”, Journal of Environmental Management, 
Vol. 192, pp. 1-14, 2017 

[28] Environmental Management Bureau-Caraga Region, Tubay River Water 
Quality Assessment, 2015 

[29] G. Chander, B. Markham, D. Helder, “Summary of Current Radiometric 
Calibration Coefficients for”, Remote Sensing of Environment, Vol. 1, 
No. 2009, pp. 1-24, 2009 

[30] S. M. Adler-Golden, A. Berk, L. S. Bernstein, S. Richtsmeier, P. K. 
Acharya, M. W. Matthew, G. P. Anderson, C. L. Allred, L. S. Jeong, J. 
H. Chetwynd, “FLAASH, a MODTRAN4 atmospheric correction 
package for hyperspectral data retrievals and simulations”, in: 
Proceedings of the 7th Annual JPL Airborne Earth Science Workshop, 
Vol. 97, JPL Publication, 1998 

[31] P. S. Chavez, “An improved dark-object subtraction technique for 
atmospheric scattering correction of multispectral data”, Remote Sensing 
of Environment, Vol. 24, No. 3, pp. 459-479, 1988 

[32] G. Srivastava, P. Kumar, “Water quality index with missing 
parameters”, International Journal of Research in Engineering and 
Technology, Vol. 2, No. 4, pp. 609-614, 2013 

 

AUTHORS PROFILE 
 

Michelle V. Japitana is an Associate Professor the College Engineering 
and GeoSciences (CEGS), Caraga State University and is currently a 
Doctor of the Engineering Program of the University of San Carlos. She 
received her BSc degree in Geodetic Engineering from Caraga State 
University in 2003 and her MSc in Remote Sensing from the University 

of Philippines. Her research interests include resource mapping, 
environmental monitoring, and RS-GIS applications. 

Marlowe Edgar C. Burce is an Associate Professor of the University of 
San Carlos. He finished his PhD (2012) and MSc (2009) in Biosystems 
Sustainability at Hokkaido University, Japan. He also received his MSc 
in Information Technology in 2005 and BSc in Computer Engineering at 
the University of San Carlos. His research interests include precision 
agriculture, field robotics, remote sensing, management information 
systems, application and systems programming, programmable logic 
controllers, microcontrollers and embedded systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


