
Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4243-4248 4243

www.etasr.com AL-msie’deen: Tag Clouds for the Object-Oriented Source Code Visualization

Tag Clouds for Object-Oriented Source Code

Visualization

Ra'Fat Al-Msie'deen

Department of Computer Information Systems, Faculty of IT
Mutah University, Karak, Jordan
rafatalmsiedeen@mutah.edu.jo

Abstract—Software visualization helps software engineers to
understand and manage the size and complexity of the object-

oriented source code. The tag cloud is a simple and popular

visualization technique. The main idea of the tag cloud is to

represent tags according to their frequency in an alphabetical

order where the most important tags are highlighted via a

suitable font size. This paper proposes an original approach to
visualize software code using a tag cloud. The approach exploits

all software identifier names to visualize software code as a tag

cloud. Experiments were conducted on several case studies. To

validate the approach, it is applied on NanoXML and ArgoUML.

The results of this evaluation validate the relevance and the

performance of the proposed approach as all tag names and their

frequencies were correctly identified. The proposed tag cloud
visualization technique is a helpful addition to the software

visualization toolkit. The extracted tag cloud supports software
engineers as they filter and browse data.

Keywords-software engineering; software visualization; object-

oriented source code; tag clouds

I. INTRODUCTION

Object-oriented (OO) source code visualization helps
software engineers understand and manage the complexity and
size of software code [1]. This paper proposes an original
approach called Iconic to visualize OO software as a tag cloud
[2] (the name of approach is inspired by icons, iconic is the
feature of an icon). A tag cloud is a visual representation of
textual content that uses color and size to point out word
frequency [3]. The tag is generally a single word. The
importance of each tag is displayed with font size or colour [4].
Tag clouds can be categorized into two categories: static tag
clouds and dynamic tag clouds [5]. Most existing approaches
are designed to extract tags from web pages and text
documents [3, 5-7]. The current studies that identify tag clouds
from software code exploit only software classes and methods
[8-11]. Moreover, these approaches add class and method
names to the tag cloud without any pre-processing (i.e. as
written in the software code). In the literature, there is no
approach to identify tag clouds by using all software identifiers
(i.e. packages, classes, attributes and methods).

In this paper, tag cloud shows the most common tags across
software identifiers. In the cloud some tags may appear more
important than others, where the tag frequency determines the
tag font size. The use of color is arbitrarily, it is used just for

aesthetic purposes. Tags are sorted alphabetically or according
to their frequency (Figure 2). Iconic accepts the source code of
software systems as input. Then, based on static code analysis
[12], Iconic extracts all software identifier names. Then, it
splits the identifier names into their constituent words. Then, it
acquires the words’ roots. After that, it assigns weights to each
tag based on its frequency across software code and stores the
tags in a standard order. Finally, Iconic builds the tag cloud as
output.

II. RELATED WORK AND COMPARISON WITH ICONIC

Authors in [9] used tag cloud to visualize software classes.
The extracted tag clouds exposed the most common tags used
in software class names. Iconic visualizes software package,
class, attribute and method names as a tag cloud. The identified
tag cloud has exposed the most frequently-used tags across
software identifier names. Authors in [10] proposed an
approach to visualize software methods via tag cloud. The tag
cloud visualizes names of methods, parameters and local
variables. In a tag cloud, if a tag name is selected, then the
related source code elements in the graph visualization will be
highlighted. In Iconic, there is no graph visualization of source
code elements. Iconic does not identify the link between tag in
the cloud and the source code elements in the graph
visualization. Iconic visualizes software identifiers as a tag
cloud. Authors in [8, 11] used the tag cloud to visualize
software methods. Their tool allows the user to explore the tag
cloud using different layouts. In a tag cloud if a tag is selected,
then the related tags in the cloud will be highlighted. In their
work, the tag cloud is customizable and the tool allows tag
layouts to change. Iconic uses a tag cloud to visualize all
software identifiers. Iconic allows the software developer to
explore the tag cloud using a typewriter layout with tag names
in alphabetical order. Author in [13] presents an automatic
approach to extract software code labels. The approach splits
the name of an identifier into a set of keywords. Then, it returns
each keyword to its stem to generate the code labels. The
approach creates labels with the same font size and colour.
There is no indication about label importance in the extracted
code labels. In Iconic, the tag frequency determines the tag font
size in the tag cloud.

There are other approaches to visualize software code by
using different techniques. In a previous work [1], this author
has developed a tool named Vsound to visualize the software

Corresponding author: Ra'Fat Al-Msie'deen

Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4243-4248 4244

www.etasr.com AL-msie’deen: Tag Clouds for the Object-Oriented Source Code Visualization

source code and its main dependencies. Vsound depends on
software identifiers to visualize, understand and document the
software code. Vsound aims for a graphical representation of
software code as a graphic-based document. Authors in [14]
suggested a feature naming technique by using the VariClouds
approach. VariClouds is a method that uses word cloud
visualization in order to assign names to identified blocks (i.e.
features) based on the most frequent words in those blocks.
VariClouds is developed for helping software engineers in
feature identification and naming. Authors in [15] offered a
feature naming method as part of their automatic feature model
extraction technique (called REVPLINE approach). They
assigned names for features based on the most frequent tokens
of the identified blocks. The most frequent tokens within the
block represent the most frequent tags within a tag cloud. The
word cloud can be used in [15, 16] in order to identify the name
of the features extracted from the software code as atomic
blocks based on the most frequent words in those blocks. In a
software engineering domain, there are limited existing
software engineering tools which use a tag cloud visualization
technique. Eclipse plugin Sourcecloud [17] creates a tag cloud
visualization of the text within a package, class or project with
font size weighted by tag frequency and colors assigned
arbitrarily. On the other hand, Iconic uses all software
identifiers to generate tag cloud, not the whole software
document. A tag cloud is often used to show an overview of the
contents of textual documents. Wordle [18] made it easy to
generate tag clouds from a specific text. Wordle is a tag cloud
generator for any text. Wordle presents tags in the cloud
without any pre-processing; as it appears in the text, while
Iconic uses WordNet [19] to do some simple pre-processing on
the software identifiers such as stemming and removal of stop
words. Most existing approaches are designed to extract tag
clouds from web pages and textual documents. In software
systems, there are limited existing approaches which use a tag
cloud to visualize software code. The current approaches use
tag clouds to visualize software classes or methods. The
concise overview of the existing approaches shows the need to
propose an approach to extract tag cloud from software code
using all software identifier names.

III. APPROACH OVERVIEW

This section presents the main ideas used in Iconic. It also
gives an overview of the tag cloud process. Finally, it shortly
describes the example that illustrates the tag cloud process. The
main objective of Iconic is to visualize software identifiers as a
tag cloud. The tag cloud displays the most frequently-used
words across software identifiers. Tag cloud builds an
alternative representation of the software identifiers at a higher
level of abstraction. Figure 1 presents the tag clouds process
and a sample execution of the Iconic approach (i.e.
DrawingShapes). This process takes the software source code
as its input. Its first step aims to identify all software identifiers.
Then, Iconic splits the identifier names into their constituent
words. In the next step, Iconic turns the identifier words into
their word stems or roots. Then, Iconic assigns a weight for
each tag based on its appearance frequency. After that, Iconic
stores all tags in a standard (e.g. alphabetical) order. Finally,
Iconic generates the tag cloud.

Fig. 1. The tag cloud process, and a running example.

As an illustrative example, Iconic approach considers the
drawing shapes software system [12, 13]. This software
product allows the software developer to draw three types of
shapes which are: lines, rectangles and ovals. In addition,
drawing shapes software lets the user to select the shape color.

IV. TAG CLOUD PROCESS STEP BY STEP

Iconic identifies the software tag cloud in six steps which
are detailed below.

A. Extracting Software Identifiers

Iconic takes the software code as input. Then, Iconic parser
generates an identifier file as output. Identifier file contains the
main OO elements (i.e. package, class, attribute and method).
Iconic uses the eclipse Java development tools and the eclipse
abstract syntax tree to access, modify and read the elements of
the software [20]. The abstract syntax tree is widely used in
numerous areas of software engineering as a representation of
source code.

B. Splitting the Identifiers into their Constituent Words

Iconic splits the software identifier names into a set of
words. Iconic uses the camel-case splitting algorithm [15],
which splits words based on capital letters, underscores and
numbers. Each identifier name is split into words based on the
camel-case syntax. For example: DrawingShapes is split into
drawing and shapes. Camel-case method is a simple and
broadly used method for identifier splitting algorithms [21] and
the rules of splitting are largely based on camel-case
convention.

C. Stemming Words into their Word Stems

Stemming is a method of stripping affixes from words to
form the word stem or base (e.g. performed to perform). In
Iconic approach, the stemming (e.g. removing word endings)
was achieved via WordNet [19]. Iconic uses WordNet [22]
dictionary to replace English words with their stems. In Iconic,
stemming is a way of converting an identifier name (word) to

Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4243-4248 4245

www.etasr.com AL-msie’deen: Tag Clouds for the Object-Oriented Source Code Visualization

its stem (tag). For instance, the words writing, wrote and
written all have the same base/stem which is write.

D. Assigning Weights to Tags

In Iconic approach, the tag weight gives an indication about
the tag frequency (or tag importance) across software
identifiers. In this step, tag weight is assigned to each tag,
based on its frequency of appearance in software identifiers.
For example, in drawing shapes software the draw tag occurred
ten times across software identifiers, so the given weight of this
tag is ten (Figure 4).

E. Storing Tags in a Standard Order

In Iconic, the tags within a tag cloud are arranged from left
to right, and top to bottom (i.e. typewriter style). Iconic
presents tags in a tag cloud in alphabetical order (Figure 2).
The software engineers seem more able to simply find tags in
alphabetically ordered clouds [11]. Authors in [8] indicated that
alphabetical ordering is particularly effective for tasks
involving searching for a specific tag or confirming its absence
from the cloud.

F. Generating Tag Clouds

Iconic approach generates several clouds based on the
software identifiers. Iconic clouds cover all granularity levels
of the software code. Figure 2 shows the tag cloud extracted
from drawing shapes code. This tag cloud contains all software
identifier tags (i.e. package, class, attribute and method). The
tag cloud in Figure 2 shows that the most frequently-used
words (tags) in software identifier names are draw and shape.
The most frequent tags are shown in larger fonts.

Fig. 2. Tag cloud generated from drawing shapes software.

Tag cloud helps software engineers to get the most common
and rare tags. Using Iconic approach five tag clouds are
generated: these are package, class, attribute, method, and all
software identifiers. Different software tag clouds are shown in
Figure 3. Filtering the unwanted tags from tag clouds is a
critical issue. Many filters can be added to the tag cloud [23].
The cloud filters are very important for filtering the unwanted
tags such as short tags. On the other hand, cloud filters can be
added to present precise information about tags such as the
number of tag frequency. Filtering facilities are essential and
very important to deal with enormous tag clouds. Iconic uses
two filters: short-tag and tag-frequency filters. The short-tag
filter aims to filter out the tags which have less than four
characters. While, the tag-frequency filter can be used as an
indicator for the tag frequency across software identifiers.

These two filters are very useful for software developers. For
example, short-tag filter is very important when there are too
many tag names to display in the cloud. By using this filter
some of the smaller names will not be displayed in the cloud,
while the tag-frequency filter determines the frequency of the
tag name across software identifier names as a precise number
between square brackets. Figure 4 presents the generated tag
cloud from all identifiers of drawing shapes software after
applying these two filters (Figure 2 shows the generated tag
cloud from the same software without filters).

Fig. 3. Different tag clouds extracted from Drawing Shapes software.

In the current approach, the tags are produced stripped of
information as they are simply word stems of split identifiers.
The whole identifiers may carry some information (e.g.
DrawingShapes) but the split and stemmed tags do not carry
the same information (e.g. Draw and Shape). Figure 5 shows
the identifiers tag cloud of the drawing shapes program without
splitting and stemming the identifier names. White, black and
red colours are used as a design choice of the cloud. The tag
labels are shown in black, while the tag frequencies are
presented in red color between square brackets.

Fig. 4. A tag cloud generated by using Iconic filters.

V. EXPERIMENTATION

This section presents the experiments conducted in this
study to show its soundness, and presents the ArgoUML and
NanoXML case studies. It also summarizes the obtained results

Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4243-4248 4246

www.etasr.com AL-msie’deen: Tag Clouds for the Object-Oriented Source Code Visualization

for the case studies, presenting the threats to the validity of
Iconic approach. ArgoUML [24] is a Java-based software.
ArgoUML is used for designing software systems in UML.
NanoXML software [25] is a Java program for parsing XML
files. Iconic implementation [26] converts software code into a
tag cloud. ArgoUML software represents a large system [27].
Iconic performed an evaluation of the execution time (in ms) of
its algorithms. Table I presents the execution time for each case
study. In addition, software size and the number of software
identifiers are presented. ArgoUML software is considered as a
large base code (i.e. 120,348 lines of code). The execution time
of Iconic on this case study is relatively little (approximately
45s). The different size and complexity levels show the
capability of Iconic to deal with such software systems.

Fig. 5. Tag cloud visualization created by Iconic.

TABLE I. INFORMATION ABOUT TAG CLOUDS EXTRACTED FROM

CASE STUDIES.

Case study ArgoUML NanoXML

of packages 103 3

of classes 1745 24

of attributes 3649 63

of methods 10319 318

of identifiers 15816 408

of tags 1511 135

Execution time 44836 1197

Fig. 6. Tag cloud extracted from NanoXML software.

Figure 6 shows the generated tag clouds from NanoXML
software. The most frequent tag names in ArgoUML are Get
and Action, while in NanoXML are Get, and Attribute. Figure

7 shows the tag cloud generated from the ArgoUML after
applying the short-tag and tag-frequency filter.

Fig. 7. Tag cloud extracted from ArgoUML software.

The extracted tag clouds from ArgoUML and NanoXML
show that the developer can easily find tags in alphabetically
ordered clouds [8]. Software developers look able to more
simply find tag names in alphabetically ordered clouds [28].
The evaluation of tag cloud is a vital, but challenging, aspect of
visualization [8]. Despite the abundance of visualization
techniques proposed in the software engineering field, there
remains a dearth of extensive use of the tag cloud technique. To
evaluate the proposed filters, a simple case study with five Java
developers as participants was performed. Upon starting the
evaluation, each participant was asked to see the tag cloud of
NanoXML software without filters (Figure 6) and with filters
(Figure 8). Then, each participant was asked to answer two
questions with agree or disagree. Table II displays the study
design in detail.

TABLE II. THE DESIGN OF THE USER STUDY. ALL PARTICIPANTS
SEE DIFFERENT CLOUDS FOR THE SAME SOFTWARE.

Kind of cloud

Question #

Users' ratings for each question

Without

filters

With

filters

S1: Agree

S2: Disagree

P1 P2 P3 P4 P5

×
Q1 S2 S2 S2 S2 S2

Q2 S1 S2 S1 S2 S2

 ×
Q1 S1 S1 S1 S1 S1

Q2 S1 S1 S1 S1 S1

Questions asked:

Q1 The cloud is missing important tag names.

Q2
The cloud contains information that helps me understand the

importance of tag names.

The cloud without filters contains all tag names while, the
tag cloud with filters does not contain all the tag names,
because the smaller tag names are omitted. Also, the tag cloud
with filters shows the importance of tag names using tag-
frequency in addition to tag font size. Figure 8 shows the
generated tag cloud from NanoXML software using Iconic
filters. The effectiveness of Iconic approach is measured by
their precision, recall and F-Measure [20]. For a given tag
name within the cloud, precision is the ratio of correctly
retrieved tag frequencies to the total number of retrieved tag
frequencies, while recall is the ratio of correctly retrieved tag
frequencies to the total number of relevant tag frequencies. F-
Measure is the harmonic mean between precision and recall

Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4243-4248 4247

www.etasr.com AL-msie’deen: Tag Clouds for the Object-Oriented Source Code Visualization

[29]. F-Measure gives a high value in cases where both
precision and recall are high [30]. All metrics have values
between zero and one. Table III summarizes the obtained
results for some samples.

Fig. 8. A tag cloud generated from NanoXML software.

TABLE III. TAGS MINED FROM NANOXML AND ARGOUML

Case study Tag name * **
Evaluation Metrics

Precision Recall F-Measure

ArgoUML

Apply 13 13 1 1 1

Area 9 9 1 1 1

Array 11 11 1 1 1

NanoXML

Exception 13 13 1 1 1

Element 45 45 1 1 1

Entity 25 25 1 1 1

* Tag frequency within the cloud (Figure 7 and 8)

**The number of identifiers that contain this tag

Results show that the precision value is one for all tag
names and their frequencies. If precision equals one, all
retrieved tag frequencies are relevant. This means that all
generated tag names and their frequencies are correct.
Moreover, tag cloud does not miss any tag names. This
accuracy in the result is due to the pre-processing steps, where
the identifier names are split into multiple words based on the
camel-case splitting algorithm. Then, word stemming is applied
to find the root of each word. Considering the recall metric,
recall value equals one for all tag names. If recall equals one,
all relevant tag frequencies are retrieved. This means that all
frequencies that measure the tag importance are counted.
Considering the F-Measure metric, the F-Measure value equals
one for all tag names. If F-Measure equals to one, all relevant
tag frequencies are retrieved, and only relevant tag frequencies
are retrieved. This means that all frequencies that display the
importance of tag names via font size are extracted. The result
shows the efficiency of Iconic approach.

The threat to the validity of Iconic is that the current
prototype considers only Java software. Furthermore, when a
software developer uses mix words to name software
identifiers (e.g. SeTSettingS) the camel-case splitting algorithm
can’t handle it. The WordNet may not be reliable in all cases to
find the word stem. Currently, the tag clouds are missing some
filters for example, they do not filter tag names that are too
long (e.g. filter the identifier names to only 5 characters). In
addition, it would be much faster to be able to have a filtering
search that the developer can type the tag to find it.

VI. CONCLUSION AND PERSPECTIVES

This paper proposed an original approach to visualize all
software identifiers as a tag cloud. Iconic was implemented on
numerous case studies. Iconic has been applied on NanoXML
and ArgoUML software. Results showed that all tag names and
their frequencies were correctly identified. The extracted tag
clouds have shown the most common and rare tags. Tags are
sorted alphabetically or according to their frequency. The most
frequent tags are highlighted via appropriate font size and
color. Tags within the cloud are filtered according to their
length or frequency. For future work, Iconic is planned to
support the current tag cloud with a set of user tasks [23],
including tag searching, browsing, zooming and filtering. It is
also planned to use other layouts for tag cloud such as spiral
layout [31]. In addition, it is planned to build a tag cloud using
software identifiers and code comments [32] and to identify the
link between tag names and software identifiers. Thus, in a tag
cloud if a tag name is selected, then the related identifiers will
be highlighted. Therefore, the software developers could click a
tag name and see where it is used in the source code. Finally,
the use of JavaDocs in Iconic [33] to build the tag cloud is
another future work aim.

REFERENCES

[1] R. Al-Msie’deen, “Visualizing object-oriented software for

understanding and documentation”, International Journal of Computer
Science and Information Security, Vol. 13, No. 5, pp. 18–27, 2015

[2] O. Kaser, D. Lemire, “Tag-cloud drawing: algorithms for cloud
visualization”, WWW2007, Banff, Canada ,May 8–12, 2007

[3] M. A. Hearst, D. Rosner, “Tag Clouds: Data Analysis Tool or Social

Signaller?”, 41st Hawaii International Conference on Systems Science,
Waikoloa, USA, January 7-10, 2008

[4] M. J. Wilson, M. L. Wilson, “Tag Clouds and Keyword Clouds:

Evaluating Zero-Interaction Benefits”, International Conference on
Human Factors in Computing Systems, Vancouver, Canada, May 7-12,

2011

[5] W. Cui, Y. Wu, S. Liu, F. Wei, M. Zhou, H. Qu, “Context-preserving,
dynamic word cloud visualization”, IEEE Computer Graphics and

Applications, Vol. 30, No. 6, pp. 42–53, 2010

[6] L. J. Garcia-Castro, M. Hepp, A. Garcia, “Tags4tags: Using Tagging to
Consolidate Tags”, in: Lecture Notes in Computer Science, Vol. 5690,

Springer, 2009

[7] G. J. Greene, B. Fischer, “Interactive Tag Cloud Visualization of
Software Version Control Repositories”, IEEE 3rd Working Conference

on Software Visualization, Bremen, Germany, September 27-28, 2015

[8] J. Emerson, N. Churcher, C. Deaker, “From Toy to Tool: Extending Tag

Clouds for Software and Information Visualisation”, 22nd Australian
Software Engineering Conference, Melbourne, Australia, June 4-7, 2013

[9] C. Anslow, J. Noble, S. Marshall, E. D. Tempero, “Visualizing the Word

Structure of Java Class Names”, in Companion to the 23rd Annual ACM
Sigplan Conference on Object-Oriented Programming, Systems,

Languages, and Applications, Nashville, USA, Octomber 13-19, 2008

[10] R. Cottrell, B. Goyette, R. Holmes, R. J. Walker, J. Denzinger,
“Compare and Contrast: Visual Exploration of Source Code Examples”,

5th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, Edmonton, Canada, September 25-26,

2009

[11] J. Emerson, N. Churcher, A. Cockburn, “Tag Clouds for Software and
Information Visualisation”, 14th Annual ACM SIGCHI NZ Conference

on Computer-Human Interaction, Christchurch, New Zealand,
November 15-16, 2013

[12] R. Al-Msie’deen, A. Blasi, “The impact of the object-oriented software

evolution on software metrics: The iris approach”, Indian Journal of
Science and Technology, Vol. 11, No. 8, pp. 1–8, 2018

Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4243-4248 4248

www.etasr.com AL-msie’deen: Tag Clouds for the Object-Oriented Source Code Visualization

[13] R. Al-Msie’deen, “Automatic labeling of the object-oriented source
code: The lotus approach”, Science International-Lahore, Vol. 30, No. 1,

pp. 45–48, 2018

[14] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein, Y. L. Traon, “Name
Suggestions During Feature Identification: The Variclouds Approach”,

20th International Systems and Software Product Line Conference,
Beijing, China, September 16-23, 2016

[15] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, S. Vauttier,

“Automatic documentation of [mined] feature implementations from
source code elements and use-case diagrams with the Revpline

approach”, International Journal of Software Engineering and
Knowledge Engineering, Vol. 24, No. 10, pp. 1413–1438, 2014

[16] R. Al-Msie’deen, A. D. Seriai, M. Huchard, C. Urtado, S. Vauttier,
“Documenting the mined feature implementations from the object-

oriented source code of a collection of software product variants”, 26th
International Conference on Software Engineering and Knowledge

Engineering, Knowledge Systems, Vancouver, Canada, July 1-July 3,
2014

[17] https://misto.ch/2011/09/19/tag-cloud-visualization-for-source-code/

[18] www.wordle.net

[19] G. A. Miller, “Wordnet: A lexical database for English”,

Communications of the ACM, Vol. 38, No. 11, pp. 39–41, 1995

[20] R. Al-Msie’deen, Reverse Engineering Feature Models from Software
Variants to Build Software Product Lines: Revpline Approach, PhD

Thesis, University Montpellier 2, 2014

[21] B. Dit, L. Guerrouj, D. Poshyvanyk, G. Antoniol, “Can Better Identifier
Splitting Techniques Help Feature Location?”, 19th International

Conference on Program Comprehension, Kingston, Canada, June 22-24,
2011

[22] https://wordnet.princeton.edu

[23] J. Emerson, Tag Clouds in Software Visualisation, MSc Thesis,
University of Canterbury, 2014

[24] http://argouml-downloads.tigris.org/argouml-0.28.1

[25] http://nanoxml.sourceforge.net/orig/index.html

[26] https://sites.google.com/site/ralmsideen/tools

[27] J. Martinez, N. Ordonez, X. Ternava, T. Ziadi, J. Aponte, E. Figueiredo,

M. T. Valente, “Feature Location Benchmark with ArgoUML SPL”,
22nd International Systems and Software Product Line Conference,

Gothenburg, Sweden, September 10-14, 2007

[28] M. Halvey, M. T. Keane, “An Assessment of Tag Presentation

Techniques”, 16th International Conference on World Wide Web,
Alberta, Canada, May 8-12, 2007

[29] T. F. Bissyande, F. Thung, S. Wang, D. Lo, L. Jiang, L. Reveillere,

“Empirical Evaluation of Bug Linking”, 17th European Conference on
Software Maintenance and Reengineering, Genova, Italy, March 5-8,

2013

[30] R. Al-Msie’deen, A. D. Seriai, M. Huchard, C. Urtado, S. Vauttier,
“Mining Features from the Object-Oriented Source Code of Software

Variants by Combining Lexical and Structural Similarity”, 14th
International Conference on Information Reuse & Integration, San

Francisco, USA, August 14-16, 2013

[31] S. Lohmann, J. Ziegler, L. Tetzlaff, “Comparison of Tag Cloud Layouts:
Task-Related Performance and Visual Exploration”, in: Lecture Notes in

Computer Science, Vol. 5726, Springer, 2009

[32] R. Al-Msie’deen, A. Blasi, “Supporting software documentation with
source code summarization”, International Journal of Advanced and

Applied Sciences, Vol. 6, No. 1, pp. 59–67, 2019

[33] P. W. McBurney, C. McMillan, “Automatic source code summarization
of context for java methods”, IEEE Transactions on Software

Engineering, Vol. 42, No. 2, pp. 103–119, 2016

AUTHOR PROFILE

Ra'Fat Al-Msie'Deen is an Assistant Professor at Mutah University since
2014. He received his PhD in Software Engineering from the University of

Montpellier 2, Montpellier – France, in 2014. He received his MSc in
Information Technology from the University Utara Malaysia, Kedah –

Malaysia, in 2009. He got his BSc in Computer Science from Al-Hussein Bin
Talal University, Ma’an – Jordan, in 2007. His research interests include

software engineering, software product line engineering, and formal concept
analysis.

