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Abstract—This study actualized a new hybrid adaptive controller 

design to increase the control performance of a variable loaded 

time-varying system. A structure in which LQR and adaptive 

control work together is proposed. At first, a Kalman filter was 

designed to estimate the states of the system and used with the 

LQR control method which is one of the optimal control servo 

system techniques in constant initial load. Then, for the variable 

loaded servo (VLS) system, the Lyapunov based adaptive control 

was added to the LQR control method which was inadequate due 

to the constant gain parameters. Thus, it was aimed to eliminate 

the variable load effects and increase the stability of the system. 

In order to show the effectiveness of the proposed method, a 

Quanser servo module was used in Matlab-Simulink 

environment. It is seen from the experimental results and 

performance measurements that the proposed method increases 

the system performance and stability by minimizing noise, 

variable load effect and steady-state error.   

Keywords-adaptive control; Lyapunov method; LQR; Kalman 

filter; VLS system 

I. INTRODUCTION  

Estimating the state variables in state feedback control 
systems at trust values is very important in terms of system 
performance and efficiently working of the system. 
Immeasurable state variables are generally obtained by the state 
observers. If the system is stable, the observer used is called a 
deterministic observer. Otherwise, it becomes a random 
observer. Luenberger and Kalman type observers are widely 
used. Luenberger observer (LO) belongs to the deterministic 
observer class and Kalman filter (KF) to the random observer 
class. Basic KFs can only be applied to linear random systems 
[1]. Accordingly, KFs are expressed as a mathematical method 
that can minimize the disruptive effects and estimate the states 
by reducing the root-mean-square error. This filter’s structure 
is especially used in space and military technology, robotics 
and trajectory control applications, artificial neural networks 
and different hybrid controller designs [2-5]. LQR that aims to 
minimize the errors that occur in state output value can also be 
called as linear optimal state feedback control in time-invariant 
systems. This is a technique that increases system performance 
and stability [6]. At the same time, the optimal control input is 
produced by using controller gain coefficients computed by the 
LQR method. And so, a response curve close to the desired 

reference value is obtained [7, 8]. LQR control is used with a 
KF that estimates the real states of the system in noisy 
environments in state feedback servo control systems [9, 10]. 
Lyapunov stability criteria and MIT rule are frequently used 
methods in designing traditional adaptive control systems to 
increase the system stability in time varying systems. This 
method organizes the parameter values based on a reference 
model output value and aims to increase the system 
performance against destructive effects [11]. Lyapunov based 
adaptive control method is generally more effective on system 
performance and is preferred in various fields and control 
mechanisms, e.g. position control of permanent magnet 
synchronous motor [12], X-Y table experimental platforms 
control [13, 14], and DC motor speed control [15]. 

II. MODELLING OF THE VLS SYSTEM 

A rotary servo system that can change the load in time was 
used in the experiments. In industrial applications, permanent 
magnet DC (PMDC) motors are widely used as actuators for 
electromechanical energy conversion [16]. They directly 
provide rotary motion or moment and, coupled with wheels or 
drums and cables, can provide transitional motion or force. 
VLS plant and PMDC motor parameters are given in Table I. 
The differential equations based on Newton's law combined 
with Kirchhoff's law regarding the system are: 

( )
( ) ( ) ( )a a b

di t
u t R i t L e t

dt
= + +    (1) 

( )
( ) ( ) ( )m

m m m m l

dw t
t J B w t t

dt
τ τ= + +   (2) 

( )
( ) m

m

d t
w t

dt

θ
=     (3) 

where ( )i t  is the armature current, ( )be t  is the back EMF 

voltage, ( )m tτ  is the produced motor torque, ( )l tτ  is the load 

torque, ( )m tθ  is the angle of the armature, ( )mw t  is the 

angular velocity of the armature [17]. 

The produced motor torque ( )m tτ  is related to the armature 

current ( )i t  by a constant factor tk , and the back EMF ( )be t  
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is related to the rotational velocity of the armature ( )mw t  by a 

constant factor 
mk  as given by (4)-(5): 

( ) ( )m tt k i tτ =      (4) 

( ) ( )b m me t k tω=     (5) 

TABLE I.  VLS SYSTEM AND LOAD PARAMETERS 

Symbol Definition Value 

u(t) PMDC motor voltage 6Volt 

Ra Motor armature resistance 2.6Ohm 

La Motor armature inductance 0.18mH 

kt Motor torque constant 0.00767N.m/A 

kb Motor back-EMF constant 0.00767Volt/(r/s) 

n Total gear ratio (N1/N2) 70 

g
η

 
Gearbox efficiency 0.90 

Jm Motor inertia 4.6x10-7kg.m2 

Bm Motor viscous coefficient ≅0 (negligible) 

Jl_in Initial load and gearbox moment of inertia 4.83x10-7kg.m2 

Jl_sub 
Subsequent load and gearbox moment of 

inertia 
3.41x10-3kg.m2 

Bl_in Initial load viscous damping coefficient 4.41x10-6N.m/(r/s) 

Bl_sub 
Subsequent load viscous damping 

coefficient 
4x10-2N.m/(r/s) 

 

In the VLS system, angular velocity of the load, ( )lw t , 

transmitted by the gear box from armature velocity, ( )mw t  and 

equivalent armature load torque ( )l tτ , may be expressed as:  

1
( ) ( )l mw t w t

n
=     (6) 

2

( )1
( ) ( ( ))m

l l l m

g

dw t
t J B w t

dtn
τ

η
= +   (7) 

where η is the total gear ratio and ηg  is the gearbox efficiency. 

If (7) is substituted in (2), the general moment expression for 
the motor is obtained as: 

2 2

( )
( ) ( ) ( ) ( )l m l

m m m m

g g

J dw t B
t J B w t

dtn n
τ

η η
= + + +

 

(8) 

The following equations are obtained for the state space 
expression of the system by using (1), (3), (4), (5) and (8): 

( ) 1
( ) ( ) ( )a b

m
a a a

R kdi t
i t w t u t

dt L L L
= − − +   (9) 

( )
( )

eqm t
m

eq eq

Bdw t k
i t w

dt J J
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( )
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dt
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where 
2η

= + l
eq m

g

J
J J

n
 and 

2η
= + l

eq m
g

B
B B

n
. 

If (9)-(11) are arranged in the state space model and the 
armature angle is accepted as the output, the state space 
expression of the servo system is obtained as (12) and (13): 

( ) ( ) ( )x t Ax t Bu t= +�     (12) 

( ) ( )y t Cx t=      (13) 

where state variables are defined as: 

1 1

2

3
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( ) ( ) ( )

( ) ( )

m

m

x t i t

x t x t w t

x t tθ
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and the state, input and output matrices are obtained as; 

[ ]

0 1

0 , 0 , 0 0 1 .

0
0 1 0

a b

a a

a
eqt
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R k

L L
L
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J J
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III. STATE ESTIMATION WITH KALMAN FILTER 

Kalman filter is a method that estimates the states and the 
desired output of the system by using the control input signal 
u(t) and the noisy system output signal y(t). Figure 1 shows the 

basic block diagram of this method, where ˆ( )x t  represents the 

estimation state output, ˆ( )y t  shows the estimation position 

(trajectory) output, ( )w t shows the process noise stemming 

from the deviations occur in the system model and ( )v t  

indicates the measurement noise stemming from the problems 
in measurements. 

 

 

Fig. 1.  Block diagram of the state estimation with Kalman filter 

Linear difference equations (14) and (15) were used to 
estimate the states of the discrete-time Kalman filter [18]: 

1 1 1k k k kx Ax Bu w− − −= + +
   (14) 

k k kz Hx v= +
    (15) 

where kz refers the real measurement value, kw  shows the 

process noise and kv  represents the measurement noise. 

Kalman filter has two different equation groups. One of them 
consists of the time update equations that perform estimations 
of current situations and available error covariance. The other 
type of equations is the measurement update equations that 
perform the estimations of states to be used for the feedback. 
Time update equations are known as “estimating equations” 
and the measurement update equations are known as the 
“corrector equations”. Time and measurement updating 
systems of the cycle belonging to the Kalman filter are given in 
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summary in Figure 2, where ˆkx  shows the estimated states and 

ˆ−kHx  indicates the measurement value estimated. Kk matrix 

known as the gain value, with n×m dimensions, minimizes the 
next error covariance equality. In addition, noise covariance 
matrix Q and measurement noise covariance matrix R should 
be defined for the estimation.  

 

 

Fig. 2.  Kalman filter cycle 

IV. LQR ASSISTED, LYAPUNOV BASED, ADAPTIVE CONTROL 

OF A VLS SYSTEM 

The block diagram of the system performed in this study is 
given in Figure 3. The system consists of Kalman state 
estimation, LQR control and adaptive control sub-blocks. As 
the Figure shows, adaptive control is added to the LQR 
controlled system. In this way, the control signal (u) is the sum 
of the adaptive control signal u1 and the LQR signal u2. In the 
system, servo system’s states that are purified from the noise 
are estimated by the KF and the state space feedback of the 
system is actualized by the optimal K value computed by LQR 
for initial load [10]. In addition, adaptive control was added to 
eliminate the effects of the changing load parameters. Proper 
selection of the parameter values that affect the system 
response is crucial for the system stability and performance in 
Lyapunov’s stability theory. The transfer function of the servo 
system by taking the Laplace transformation of (1), (3), (8) is 
obtained as (16). La is neglected because it is very small [19]. 

( )

( ) ( )
=

+
Y s b

U s s s a
    (16) 

where b and a coefficients are obtained as: 

t

a eq

k
b

R J
= , .

a eq t b

a eq

R B k k
a

R J

+
=

 

 

 

Fig. 3.  State estimation with KF and LQR assisted adaptive control system 

Accordingly, there is a need to know a quadratic system, a 
quadratic reference model, and the mathematical definitions 
belonging to the control input based on the controller 
parameters. Let’s assume that these are defined as reference 
model in (17), plant model in (18) and adaptive control signal 
in (19) [20]: 

2

2

m m
m m

d y dy
a b r

dtdt
= − +

   
(17) 

2

12

d y dy
a bu
dtdt

= − +
    

(18) 

1 1 2

dy
u r

dt
θ θ= −

    
(19) 

where, θ1 and θ2 refer the control parameters, y is the plant 
output, ym is the reference model output, and r is the reference 
input signal. The tracking error of the control system is given in 
(20): 

me y y= −
     

(20)  

By subtracting the (17) from (18), we get: 

2

12
( )m

m m

dyd e dy
a bu a b r
dt dtdt

= − + − − +
  

(21)  

Equation (22) is obtained as below if (19) is written instead 
of u1 statement in (21): 

2

1 22

m
m m

dyd e dy dy
a b r a b r
dt dt dtdt

θ θ = − + − + − 
   

(22) 

If we add and subtract m

dy
a

dt
statement to both sides of 

equilibrium in (22) and necessary mathematical operations are 
performed, the derivative equation of the error is found in (23): 

( ) ( )2 1m m m

de
a e b a a y b b r

dt
θ θ= − − + − + −

 
(23) 

In (23), the required conditions need to be found for 
trajectory error to converge to zero. Those conditions are 

provided by 2 mb a aθ = −  and 1 mb bθ =  equations. Control 

parameters should be well organized to increase system 
performance. Lyapunov function that is given in (24) is used to 
obtain the desired parameter values: 

( ) ( )

( )

22
1 2 2

1

2

1

2

1 1
, , (

2

1
                )

θ θ θ
γ

θ
γ

= + + − +

+ −

m

m

v e e b a a
b

b b
b

 

(24) 

In (24), Lyapunov adaptation gain values are defined by γ1 

and γ2. Because they are greater than zero, 1bγ and 2bγ  values 

are greater than zero. In this case, (25) can be written:  

( )
( ) ( )2

2 12
1 2

1 2

1
, ,

2 2 2

m mb a a b b
v e e

b b

θ θ
θ θ

γ γ

+ − −
= + +

 

(25) 

According to Lyapunov stability theory, the Lyapunov 
function needs to be bigger than zero for the system to be stable 
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[11]. Moreover, the derivative of the same function needs to be 
smaller than zero. The following equations can be obtained 
when the derivative of this function is taken: 

( )

( )

2
2

1

1
1

2

1

1
      

θ
θ

γ

θ
θ

γ

= + + −

+ −

m

m

ddV de
e b a a

dt dt dt

d
b b

dt
  

(26) 
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2

1
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θ γ

θ
θ γ
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= − − + − − + 
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 
+ − + 
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m m

m

ddV
a e b a a ye

dt dt

d
b b re
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(27) 

By reference to (27), the derivative expression of the 
function becomes smaller than zero if the parameter values are 
obtained. Accordingly, the stability condition of the system is 
ensured, if the parameters are updated as follows: 

1
2

θ
γ= −

d
re

dt
     (28) 

2
1

θ
γ=

d
ye

dt
     (29) 

2
1

γ
θ = re

s
     (30) 

1
2

γ
θ = ye

s
     (32) 

where θ1 and θ2 are the control parameters with adjustable 
gains γ1 and γ2. In conclusion, the system becomes stable if a 
proper controller design is provided in (30) and (31). 
Adaptation gain parameters should be selected according to the 
adaptation rate of the system [21].   

Linear quadratic regulator (LQR) provides an optimal 
control law for a linear system with a quadratic performance 
index. The LQR gain value (K), that provides optimal state 
feedback in the system is found in the solution of the Riccati 
equation given by (32) [22]: 

1
0

T T
PA A P Q PBR B P

−+ + − =
   

(32)  

The matrix P obtained from the solution of the Riccati 
equation is replaced by (33) and the LQR gain value K is 
calculated. Then using this K value, the u2 control signal is 
calculated as given in (34). 

1 TK R B P−=
     

(33)  

2 ˆ( ) ( )u r t Kx t= −
    

(34)  

where ˆ( )x t  is the estimation state vector, Q is the state 

weighting matrix and R is the input weighting matrix as in KF.  

V. SIMULATION RESULTS 

The block diagram of the Kalman state estimation and the 
LQR assisted adaptive control system is given in Figure 3. As 
seen from the figure, the control signals (u) is the sum of the 

adaptive controller output signal (u1) and LQR output signal 
(u2) given by (19) and (34). LQR and adaptive controllers are 
designed for initial load (Jl_in, Bl_in) in the experimental system. 
The load was kept constant at the first experiment, and the 
system output responses were obtained separately for LQR (not 
included adaptive control) and proposed LQR assisted adaptive 
control. In the second experiment, the system load was changed 
to Jl_sub and Bl_sub at 110 seconds and the response curve was 
obtained for the LQR assisted adaptive control system. The 

initial load values are given as 
7 2

_ 4.83 10
−=l inJ x kgm  and 

6
_ 4.41 10 / ( / s)

−=l inB x Nm r  in Table I. In this case the VLS 

system parameters A, B, C are obtained as: 

[ ]

4

14444, 44 42.61 0 5555.56

16670 21.73 10 0 ,  0

0 1 0 0

0 0 1 .

A x B

C

−

− −   
   = − =   
     

=

 

Also, if we choose the R and Q parameters for the Kalman 
filter and LQR control as follows, the LQR gain is found as 

[ ]1.1036 0.9926 1=K . 

3 0 0

0 3 0 ,  3.

0 0 3

Q R

 
 = = 
  

 

In the design of the Lyapunov based adaptive control 
system, a 2

nd
 order system given in (35) is used as a reference 

model.  

2

60
( )

15 60
mG s

s s
=

+ +     
(35) 

In the first experiment, while the load was kept constant at 
the initial value, performance measurements of the LQR 
control and LQR assisted adaptive control were obtained as 
given in Table II. It is seen that the proposed LQR assisted 
adaptive control system gives better performance values than 
the pure LQR control. The effects of the LQR and LQR 
assisted adaptive control on the system are shown in Figure 4 
and a zoom area of Figure 4 is shown in Figure 5. Error change 
is shown in Figure 6 and parameter changes are given in Figure 
7 for the LQR assisted Lyapunov based adaptive control 
method. 

 

 

Fig. 4.  Results obtained from the LQR and LQR assisted adaptive control 

method in a time-unvarying system 
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Fig. 5.  A magnified area of Figure 4 

 

Fig. 6.  Error change in LQR assisted adaptive control system  

 

Fig. 7.  Parameter changes in LQR assisted adaptive control system 

In the second experiment, the load values are changed to 
3 2

_ 3.41 10
−=l subJ x kgm  and 

2
_ 4 10 / ( / s)

−=l subB x Nm r  in the 

110
th
 second to generate variable load. Adaptation gains were 

taken the same as 1 30.5γ = and 2 21.2γ =  (Table II). The 

response of the LQR assisted adaptive control system is given 
in Figure 8. The effect of the variable load occurring at the 
110

th
 second is clearly seen. The effect of variable load on 

parameter changes is shown in Figure 9 and the error change is 
given in Figure 10 for the LQR assisted Lyapunov based 
adaptive control method. 

 

 
Fig. 8.  Result obtained from the LQR assisted adaptive control method in 

variable load at the 110th second 

 

Fig. 9.  Effect of variable load on parameter changes in the 110th second 

 
Fig. 10.  Error change in LQR assisted adaptive control system for varying 

load at the 110th second 

TABLE II.  PERFORMACE MEASUREMENTS 

Method γ1 γ2 ISE IAE ITAE 

LQR Control - - 3,058 7.802 885.5 

LQR adaptive control 30.5 21.2 1,2 3.029 294.2 

 

VI. CONCLUSIONS 

This research designed a new control system with LQR 
assisted, Lyapunov based, adaptive control that compensates 
disruptive effects like noise and variable load and increases 
system performance. This controller structure has been 
successfully used in the trajectory control of a servo system 
that can change the load over time. The system can estimate the 
states of the time-varying servo system, so, the disruptive 
effects can be minimized. A stable system design that can 
comply with the environmental conditions was prepared.  

It is seen by the experimental results that the proposed 
method gives very good results in controlling systems that are 
exposed to the adverse effects like variable load. Actually, the 
proposed system compensates well in time-varying systems, so, 
the system is beneficial in optimal controlling of the system. 
The error between the system output response and the reference 
input signal is minimized in time as shown in Figure 10. It is 
understood from the results that the system control parameters 
can adapt in time.  

REFERENCES 

[1] G. Bishop, G. Welch, An Introduction to the Kalman Filter, ACM, 2001 

[2] B. O. Teixeira, M. A. Santillo, R. S. Erwin, D. S. Bernstein, “Spacecraft 
tracking using sampled-data Kalman filter”, IEEE Control Systems 
Magazine, Vol. 28, No. 4, pp. 78-94, 2008 

[3] M. E. Hough, “Precise orbit determination using satellite radar ranging”, 
Journal of Guidance, Control, and Dynamics, Vol. 35, No. 4, pp. 1048-
1058, 2012 



Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4125-4130 4130  
  

www.etasr.com Aydogdu & Levent: Kalman State Estimation and LQR Assisted Adaptive Control Of a Variable Loaded … 

 

[4] J. R. Vetter, “Fifty years of orbit determination”, Johns Hopkins APL 
Technical Digest, Vol. 27, No. 3, pp. 239-252, 2007 

[5] H. Chen, G. Chen, E. Blasch, K. Pham, “Comparison of several space 
target tracking filters”, in: Sensors and Systems for Space Applications 
III, Vol. 7330, pp. 73300I-1 - 73300I-12, SPIE, 2009 

[6] H. H. Bilgic, M. A. Sen, A. Yapici, M. Kalyoncu, “Dofrusal Ters 
Sarkacin Denge Kontrolu Icin Yapay Sinir Agi Tabanli Bulanik Mantik 
& LQR Kontrolcu Tasarimi”, Otomatik Kontrol Ulusal Toplantisi 
Bildiriler Kitabi, Kocaeli, Turkey, July 11-13, 2014 (in Turkish) 

[7] J. Arslan, G. Muhurcu, “Speed Control of Direct Current Motor with 
Linear Quadratic Gaussian Control”, Elektrik – Elektronik – Bilgisayar 
ve Biyomedikal Muhendisligi Sempozyumu–(ELECO 2014), Bursa, 
Turkey, November 27-29, 2014 

[8] D. Grewal, “Kalman Filtering”, in: International Encyclopedia of 
Statistical Science, Springer, 2011 

[9] S. Tunyasrirut, V. Kinnares, J. Ngamwiwit, “Performance improvement 
of a slip energy recovery drive system by a voltage-controlled 
technique”, Renewable Energy, Vol. 35, No. 10, pp. 2235-2242, 2010 

[10] Y. Zhi, G. Li, Q. Song, K. Yu, J. Zhang, “Flight control law of 
unmanned aerial vehicles based on robust servo linear quadratic 
regulator and Kalman filtering”, International Journal of Advanced 
Robotic Systems, Vol. 14, No. 1, 2017 

[11] S. Pankaj, J. S. Kumar, R. K. Nema, “Comparative analysis of MIT rule 
and Lyapunov rule in model reference adaptive control scheme”, 
Innovative Systems Design and Engineering, Vol. 2, No. 4, pp. 154-162, 
2011 

[12] F. J. Lin, S. G. Chen, I. F. Sun, “Adaptive backstepping control of six‐
phase PMSM using functional link radial basis function network 
uncertainty observer”, Asian Journal of Control, Vol. 19, No. 6, pp. 
2255-2269, 2017 

[13] H. Wang, X. Zhao, Y. Tian, “Trajectory tracking control of XY table 
using sliding mode adaptive control based on fast double power reaching 
law”, Asian Journal of Control, Vol. 18, No. 6, pp. 2263-2271, 2016 

[14] W. L. Mao, C. W. Hung, S. Suprapto, “Adaptive fuzzy trajectory control 
for biaxial motion stage system”, Advances in Mechanical Engineering, 
Vol. 8, No. 4, 2016 

[15] B. Rashidi, M. Esmaeilpour, M. R. Homaeinezhad, “Precise angular 
speed control of permanent magnet DC motors in presence of high 
modeling uncertainties via sliding mode observer-based model reference 
adaptive algorithm”, Mechatronics, Vol. 28, pp. 79-95, 2015 

[16] O. Aydogdu, O. Alkan, “Adaptive control of a time-varying rotary servo 
system using a fuzzy model reference learning controller with variable 
adaptation gain”, Turkish Journal of Electrical Engineering & Computer 
Sciences, Vol. 21, No. 2, pp. 2168-2180, 2013 

[17] C. Kasnakoglu, “Modeling and control of flow problems by adaptation-
based linear parameter varying models”, Turkish Journal of Electrical 
Engineering & Computer Sciences, Vol. 18, No. 5, pp. 819-852, 2010 

[18] F. L. Lewis, L. Xie, D. Popa, Optimal and Robust Estimation, CRC 
Press, 2007 

[19] E. Flores, R. E. Castro, L. F. Chaves, “Conventional compensators 
design using Newton's method”, 11th World Congress on Intelligent 
Control and Automation, Shenyang, China, June 29-July 4, 2014 

[20] M. Pal, G. Sarkar, R. K. Barai, T. Roy, “Design of different reference 
model based model reference adaptive controller for inversed model 
non-minimum phase system”, Mathematical Modelling of Engineering 
Problems, Vol. 4, No. 2, pp. 75-79, 2017 

[21] P. Swarnkar, S. Jain, R. K. Nema, “Effect of Adaptation Gain in Model 
Reference Adaptive Controlled Second Order System”, Engineering, 
Technology & Applied Science Research, Vol. 1, No. 3, pp. 70-75, 2011 

[22] S. B. Roland, Advanced Control Engineering, Burterworth-Heinemann, 
2001 

 

AUTHORS PROFILE 

 
O. Aydogdu received his BE from the Department of Electrical and 
Electronics Engineering, Selcuk University, Konya, Turkey, in 1995, and his 
MSc and PhD degrees from Graduate School of Natural Sciences, Selcuk 
University, Konya, Turkey, in 1999 and 2006, respectively. Currently he is an 

Associate Professor in the Faculty of Engineering and Natural Sciences at 
Konya Technical University. He has many publications in different areas of 
control engineering. 

M. L. Levent received his BSc degree from the Department of Electronics 
and Communication Engineering, Kocaeli University, Kocaeli, Turkey, in 
2011, and his MSc degree from the Graduate School of Natural Sciences, 
Selcuk University, Konya, Turkey, in 2016. He continues his PhD. studies at 
the Institute of Graduate Education, Konya Technical University, Konya, 
Turkey. Currently he is an Research Assistant in Hakkari University, Hakkari, 
Turkey. His fields of interest are learning control, adaptive control and 
optimal state feedback control.   

 


