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Abstract—This article presents a comparison of the computing 

performance of the MapReduce tool Hadoop and Giraph on 

large-scale graphs. The main ideas of MapReduce and bulk 

synchronous parallel (BSP) are reviewed as big data computing 
approaches to highlight their applicability in large-scale graph 

processing. This paper reviews the execution performance of 

Hadoop and Giraph on the PageRank algorithm to classify web 

pages according to their relevance, and on a few other algorithms 

to find the minimum spanning tree in a graph with the primary 

goal of finding the most efficient computing approach to work on 

large-scale graphs. Experimental results show that the use of 
Giraph for processing large-size graphs reduces the execution 

time by 25% in comparison with the results obtained using the 

Hadoop for the same experiments. Giraph represents the optimal 

option thanks to its in-memory computing approach that avoids 
secondary memory direct interaction. 
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I. INTRODUCTION  

Daily, 2.5 quintillion bytes are created globally [1]. The 
size of the “digital universe” was 4.4 zettabytes in 2013 and a 
tenfold growth is forecasted by 2020 [2]. Precisely, given this 
growth exponential of information, the term big data is 
popularized. According to [3], big data is defined as: “large 
volumes, high speed and a great variety of information that 
demand innovative and profitable forms of information 
processing to improve understanding and decision making”. 

Although there is a tendency to increase the space for 
information storage, there is no equivalent increase in the speed 
of access and processing. A direct solution to this problem, to 
reduce access time and data processing, is the use of computer 
clusters [4]. In this context, several distributed systems exist 
which permit combining data from different sources, but with 
high analysis and development costs, mainly for the 
concurrency of tasks, their synchronization, access and data 
transfer [4]. Hadoop, an open-source framework based on 
MapReduce [5, 6] appears as a solution for the mentioned 
issues. According to [7], big data processing closely associates 
with unstructured information, that is, directly unrelated data. 
However, in current social networks, such as Facebook and 
Twitter, there are links between the component nodes, so their 
direct representation as graphs is adequate. However, due to the 
structure and associations of graphs, MapReduce and Hadoop 
are not optimal for processing, due to the high cost of 
input/output of information and the possibility of requiring 
many chained MapReduce phases. In this context, Giraph [8, 9] 
emerges. Giraph is an open-source counterpart of Pregel [10], a 
graph processing system developed by Google for the 
processing of large graphs. Although the generation of data 
grows at a rate of 60% per year, the technologies related to big 
data such as Hadoop and Giraph are still under development in 
Chile. “We still need to know what big data can do for national 
companies and how they could impact different business lines” 
[11]. Only 17% of companies are implementing or planning to 
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apply big data in the short term in Chile [11]. The primary 
objective of this work is to present a review of the application 
of Hadoop and Giraph for the processing of graphs, and thus 
highlight the practical advantages that Giraph has over Hadoop 
when solving problems considering relational data which 
usually support iterative algorithms, such as graph structures. 
For this, this article presents a comparison performance results 
of Hadoop and Giraph algorithmic solutions for a classic 
problem (minimum spanning tree) and a more modern problem 
(classification of web pages). This work extends the research of 
[11] mainly to confirm the previously obtained results and 
conclusions, and to show its applicability for the processing of 
big data in developing countries like Chile. 

II. BIG DATA 

Hadoop [4, 12] is an open source framework created to 
achieve secure, scalable and distributed computing. Hadoop is 
based on Google documents for MapReduce [5, 6] and Google 
file system (GFS) [13] and allows the distributed processing of 
large data sets using computer clusters using simple 
programming models. 

A. MapReduce 

Hadoop implements a computational paradigm called 
MapReduce. Algorithmically, the base of MapReduce is the 
“divide and conquer” approach, that is, it divides the problem 
into small pieces for processing in parallel and thus obtains 
solutions in a distributed environment [12]. The MapReduce 
programming model composes of a Map function and a Reduce 
function: Map receives a key-value input pair and produces a 
set of intermediate key-value pairs. Then MapReduce groups 
all intermediate values associated with the same intermediate 
key as the input of the Reduce function. In this way, the 
Reduce function accepts an intermediate key and a set of 
related values for that key to mix these values and thus form a 
new set of final output [6]. Usually, a solution in MapReduce is 
performed in five stages: i) Splitting: the data are divided into 
multiple parts and delivered to each mapper. ii) The mapper 
executes the map function in charge of processing the data. iii) 
The combiner works directly on the output of mappers for local 
aggregation. iv) Shuffle: it is responsible for shuffling and 
ordering the key-value pairs for the function Reduce. v) 
Reducer: in the last step all the values with the same 
intermediate key are reduced to generate the final key-value 
pairs [6].  

B. Hadoop Distributed File System (HDFS) 

Hadoop includes a distributed file system (HDFS) that can 
handle large amounts of data. The most efficient pattern of data 
processing is to write once and read many times [4]. Such as in 
a file system of a single disk, the files in HDFS are divided into 
blocks for their storage and representation as independent units. 
An HDFS cluster presents two types of nodes which operate in 
a master-worker pattern: a Namenode (the master) and several 
Datanodes (workers) [12]. The Namenode stores and manages 
the metadata of the file system, and knows the Datanodes in 
which all the real blocks for a given file are located. When the 
data are retrieved, the client contacts the Namenode to obtain 
the list of the requested data locations and then directly 
contacts the Datanode to extract the real data [12]. Both, 

MapReduce and HDFS, manage errors automatically by the 
Hadoop framework [4]. 

III. BIG GRAPHS, PREGEL AND GIRAPH SOLUTIONS  

Graphs are a finite abstract data type, which consists of a 
set of edges and nodes or vertex. An edge between two nodes x 
and y can be described mathematically by a function edge (x, 
y) [7]. In Big Data analysis, graph processing is considered 
computationally tricky due to its variable nature [7]. Besides, 
graph processing is not adequate with general-purpose systems 
such as MapReduce [14]. For the processing of large graphs 
(big graphs), Pregel and Giraph are used, which are based on 
the Bulk Synchronous Parallel (BSP) [15]. BSP is a parallel 
computing model, in which the calculations are divided into 
super passes (super-steps) separated by global barriers [16].  

A. Pregel 

In 2010 Google announced Pregel [10], a framework for 
distributed graph processing based on BSP. Its objective was to 
provide a certain level of abstraction so that programmers do 
not have to deal with distributed memory management or 
synchronization [8, 17]. The paradigm used by Pregel is “think 
as vertex”. Pregel specifies each calculation regarding what 
each vertex should do, and edges are the communication 
channels for the transmission of the results from one vertex to 
another. In each super-step, a vertex can execute a user-defined 
function and change its status from active to inactive. An argue 
vertex can vote to stop a super-step (inactive) and awake when 
it receives a message (active) [16]. 

B. Giraph 

Apache Giraph [8, 9] is an open-source alternative of 
Pregel. In Pregel, to support multithreading, each worker is 
assigned several partitions of the graph. During each super 
step, a pair of available workers calculates threads with non-
calculated partitions. Each worker maintains its own message 
store to store all incoming messages. To reduce the contention 
in the warehouse, and to efficiently use network resources, 
each computing thread has a cache buffer for all outgoing 
messages [18]. To implement the BSP model, the workers 
maintain two stores in each super-step, one for previous 
messages and another for current messages [18]. Giraph 
supports different data structures for the list of adjacent vertices 
[16]. It is important to note that Giraph solutions run as 
MapReduce tasks and they use Zookeeper to coordinate global 
barriers [18]. A Giraph solution is organized as a set of 
idealized iterative super-steps. In each super step, a vertex can 
send messages to the other vertices, can get its stored values or 
known information from its edges, and vote to stop. At the 
beginning of the computation (super-step 0), all vertices start 
with an active state. A vertex votes to stop because it decided, 
from its local point of view, that its work is done and the 
calculation can conclude. The delivery of a message changes 
the state of a vertex from inactive to active. Giraph finishes the 
calculation when all the vertices are inactive, and there are no 
messages to send. 

IV. EXPERIMENTS AND RESULTS  

For performance comparison of graph processing between 
Hadoop and Giraph, two algorithmic situations are considered:  
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• Classification of pages - PageRank: PageRank is an 
algorithm created by Google [14] to classify web pages, 
based on the idea that the most relevant web pages probably 
receive more links from other web pages [16]. The web 
conceptualizes as a directed graph in which all web pages 
are nodes, and there are arcs between pages if there are 
links between those pages. Typically, PageRank iterates 
until reaching a convergence, that is, when the PageRank 
values for each node no longer change. Therefore, at the 
end of each iteration, PageRank should check the 
convergence state. On the other hand, as authors in [19] 
highlight, PageRank can also fix a fixed number of 
iterations. 

• Minimal Spanning Tree - Kruskal and Boruvka Algorithm: 
The algorithms of Kruskal and Prim [20, 21] are standard 
solutions to obtain a minimal spanning tree of a graph. This 
paper uses an implementation of the Kruskal algorithm in 
Hadoop, and one implementation of a Giraph solution to 
find a minimal distributed spanning tree, Boruvka algorithm 
[16]. 

Hadoop 2.4.0 and Giraph 1.1 in Ubuntu 15.10 were used 
for both experiments. For the execution tests of both solutions, 
due to hardware limitations, we decided to use Hadoop in 
“Single Node Setup” mode [4] in a machine with two CPUs 
and 8 GB of RAM. For comparison, PageRank, Kruskal and 
Boruvka algorithms testing will be carried out with 
implementations in Hadoop and Giraph, respectively. Besides, 
we used a representative data set consisting of a graph with 31 
vertices and 82 edges of weight one for the case of PageRank. 
This data set corresponds to a set of cities of the region of 
Valparaiso, Chile and their connection, that is, if there is a 
direct road to connect these cities. Although these data are 
small, regarding big data, we can extrapolate them for larger 
computing scenarios. 

A. Results 

Both PageRank in Hadoop and Giraph were defined with 
30 iterations / super-steps respectively. The calculation times of 
each of these tests are shown in Figures 1-2. 

 

 
Fig. 1.  Results of the PageRank algorithm in Hadoop. 

Kruskal’s algorithm found the minimum spanning tree 
(MST) in around 3 seconds in Hadoop (Figure 3) in a single 
iteration, while its implementation in Giraph found the solution 
in around 0.7 seconds in 2 super-steps (Figure 4). 

 
Fig. 2.  Results of the PageRank algorithm in Giraph. 

 
Fig. 3.  Results of the Kruskal algorithm in Hadoop. 

 
Fig. 4.  Results of the Kruskal and Boruvka algorithm in Giraph. 

To justify the obtained results, to process the entire graph, 
MapReduce performs many chained tasks to achieve its 
objective, and each task involves inputs and outputs to disk. 
Ideally, an iteration in MapReduce represents a super-step in 
the Giraph approach [7]. With that assumption, we can 
establish an average time per iteration between the total time 
and the number of iterations / number of super-steps, for each 
of the four tests. Table I presents the mentioned results. Figure 
5 shows a comparison of the average times for the calculations 
made by Hadoop and Giraph with the Kruskal and Boruvka 
algorithms, respectively, to find the minimal spanning tree of a 
graph. When comparing the times associated with PageRank, 
the Giraph solution is at least four times faster than Hadoop. 
This difference increases to 8 times in the case of Kruskal in 
Hadoop and Boruvka in Giraph to find a tree of minimum 
expansion of a graph. 
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TABLE I.  EXECUTION TIME IN HADOOP AND GIRAPH. 

Test 
Results 

Total time (ms) Super-steps Avg. time (ms) 
PageRank Hadoop 32.238 30 1.074,6 
PageRank Giraph 7.925 30 264,2 

Kruskal Hadoop 3.096 1 3.096 

Boruvka Giraph 718 2 359 

 

 
Fig. 5.  A comparison between Hadoop and Giraph for the PageRank and 

MST algorithms. 

V. CONCLUSIONS  

According to the results, Giraph presents a four times 
higher efficiency on Hadoop in computation time of the 
PageRank algorithm. This advantage increases to almost eight 
times when it comes to finding the minimum spanning tree, 
because of the advantage of Giraph to maintain a global 
communication between each super-step without requiring 
inputs and outputs to disk since each node can exchange 
messages with others [19]. The previously described situation 
is not possible in Hadoop, since MapReduce does not provide 
any tool for global and direct communication between the 
participants in each iteration. Also, the nature of the graphs 
means that the computation of each node depends on its 
neighboring nodes, which implies that MapReduce solutions 
have to perform many chained iterations, which generates an 
excessive I/O traffic. It should be noted that Giraph is not a tool 
that comes to replace Hadoop, it should rather be a 
complementary solution for given problems. Hadoop has a 
complete ecosystem [4], which expands day by day, and it is 
relevant to know the advantages of both technologies, in order 
to assimilate them correctly. An immaturity still exists 
regarding big data technology and available information about 
its use and support use of big data tools in developing countries 
such as Chile [2, 11]. Because the focus of this work is a 
practical comparison between Hadoop and Giraph for graph 
problems, a future work would be to make a comparison 
between Giraph and current big data tools such as Apache 
Spark [22] and Flink [23, 24], in real and research scenarios 
such as model processing. Since Giraph’s primary focus is 
graph processing, it is required to verify its potential 
performance advantages. 
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