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Abstract—Coagulation and chlorination are complex processes of 
a water treatment plant (WTP). Determination of coagulant and 
chlorine dose is time-consuming. Many times WTP operators in 
India determine the coagulant and chlorine dose approximately 
using their experience, which may lead to the use of excess or 
insufficient dose. Hence, there is a need to develop prediction 
models to determine optimum chlorine and coagulant doses. In 
this paper, artificial neural networks (ANN) are used for 
prediction due to their ability to learn and model non-linear and 
complex relationships. Separate ANN models for chlorine and 
coagulant doses are explored with radial basis neural network 
(RBFNN), feed-forward neural network (FFNN), cascade feed 
forward neural network (CFNN) and generalized regression 
neural network (GRNN). For modeling, daily water quality data 
of the last four years are collected from the plant laboratory of 
WTP in Maharashtra (India). In order to improve performance, 
these models are established by varying input variables, hidden 
nodes, training functions, spread factor, and epochs. The best 
models are selected based on the comparison of performance 
measures. It is observed that the best performing chlorine dose 
model using defined statistics is found to be RBFNN with 
R=0.999. Similarly, the CFNN coagulant dose model with 
Bayesian regularization (BR) training function provided excellent 
estimates with network architecture (2-40-1) and R=0.947. Based 
on the above models, two graphical user interfaces (GUIs) were 
developed for real-time prediction of chlorine and coagulant 
dose, which will be useful for plant operators and decision 
makers. 

Keywords-artifical neural networks; chlorine dose; coagulant 
dose; water treatment, modelling 

I. INTRODUCTION  

Water treatment consists of many complex physical and 
chemical processes. The efficiency of these processes is 
accomplished by examining the quality of outlet water. 
Generally, in India, WTP operators take necessary remedial 
measures for water quality improvement using only their 
experience. This practice is inefficient and time-consuming in 
monitoring real-time responses [1, 2]. In a WTP, coagulation 
and disinfection are essential treatment processes as they assure 
the supply of safe and clear water. Conventionally, chlorine is 
the most widely used disinfectant, and aluminum sulphate 
(alum) used as a coagulant due to its high efficiency and low 

cost. Mainly, two common vital factors, turbidity and applied 
dosages, decide the effectiveness of chlorination and 
coagulation [3]. Turbidity provides a shield to microbes, which 
reduces the efficiency of chlorination. It raises chlorine 
demand, which results in less availability of residual chlorine in 
water distribution networks (WDNs) [4, 5]. In India, WDNs are 
old, have leakage issues responsible for microbial 
contamination, and there is a tendency of plant operators to 
apply higher chlorine dose for maintaining the desired residual 
chlorine in the WDN. The high chlorine dose increases the 
probability of trihalomethane (THM) formation. Consumption 
of THM containing water creates adverse effects on human 
health such as high blood pressure, reproductive system 
disorders, and cancer inception [6]. A chlorine predictive 
model will help monitoring the process and avoid complex 
laboratory analysis, which requires more time and money. 

Coagulation and chlorination processes show non-linear 
nature that is hard to express using linear mathematical models 
[7]. It is difficult to model water treatment processes due to 
complex interactions among many chemical and physical 
reactions. Thus, the application of ANNs is considered for the 
prediction of optimum coagulant and chlorine dose. An ANN is 
a biologically inspired system consisting of a number of 
interconnected elements called neurons. These neurons are 
arranged in input, hidden and output layers. All the layers are 
well connected like human brain synapses where weights are 
optimized by using input and output variables [8]. An ANN has 
the ability to learn and model non-linear and complex 
relationships. Several studies have been carried out on the 
prediction of the coagulant dose for particular WTP [9-15]. 
RBFNNs and GRNNs have shown good performance 
capabilities for predicting residual chlorine in WTP [16]. Thus, 
two ANN models are explored for prediction of coagulant and 
chlorine dose for a major WTP of Pimpri-Chinchwad 
Municipal Corporation (PCMC), Maharashtra, India. 

II. MATERIALS AND METHODS 

A. Study Area 

The WTP under study is located in PCMC, Maharashtra, 
India, 18°37'33.87'' N and 73°48'43.76''E. This WTP supplies 
428MLD of water to an area of 177km2 with 117,936 water 
connections and 59 elevated service reservoirs. 
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B. Methodology 

This study presents an ANN-based methodology for the 
prediction of chlorine and coagulant dose in a WTP. Chlorine 
dose models were developed with input variables the coagulant 
dose, outlet water turbidity, and residual chlorine and the 
chlorine dose as the output variable. Similarly, coagulant dose 
models are developed with input variables the inlet and outlet 
water turbidity, and coagulant dose as the output variable. 
Daily data of inlet and outlet water quality were collected from 
the plant laboratory over a period of four years (2012-2016). 
ANN models were developed using MATLAB version 16. 
Four ANN models are developed: RBFNN, feed-forward 
neural network (FFNN), cascade feed forward neural network 
(CFNN) and GRNN by trial and error method with modifying 
input variables, hidden nodes, training functions, spread factor 
(SF), and epochs for improving the models’ performance. The 
establishment of an optimum number of hidden nodes in ANN 
applications is always a challenging task. There is no precise 
and easy way to achieve the optimum number of nodes in each 
layer [17-20]. To build hidden neurons in a hidden layer in this 
study, information of nodes in both input and output layers is 
used. During the development of the ANN models, training and 
testing data are split into 75:30 and 80:20 respectively. 

Diversified training functions such as Bayesian 
regularization (BR), Levenberg-Marquardt (LM), resilient back 
propagation (RP), BFGS Quasi-Newton (BFG), one step secant 
(OSS), conjugate gradient back propagation (CGB), conjugate 
gradient back propagation with Fletcher-Powell (CGF), 
variable learning rate gradient descent (VLRGD), gradient 
descent (GD), gradient descent with momentum (GDM) are 
used for the development of FFNN and CFNN models. It has 
been reported that the SF of 1 and 0.1 provided the best testing 
performance of the RBFNN and GRNN models respectively 
[10]. Therefore, in this study, both RBFNN and GRNN models 
are tried for SF ranging from 0.1 to 15. The performance of 
these ANN models is quantified by using standard statistics 
which means (Х̅), standard deviation (σ), skewness (ɣ1), 
kurtosis (ɣ2) and error statistics such as the coefficient of 
regression (R), mean square error (MSE), and mean absolute 
error (MAE). The best performing ANN model is selected for 
its highest R and lowest MSE and MAE values. Also, the 
mapping of predicted series with observed series is checked for 
standard statistics, time series plots and scatter plots. Two 
GUIs for prediction of chlorine and coagulant dose were 
developed for the best model in each category. 

III. RESULTS AND DISCUSSION 

Based on the above explained methodology, 48 ANN models 
for prediction of chlorine dose and 44 ANN models for 
prediction of coagulant dose were developed. The networks 
were rigorously trained and the performances of the training 
functions are shown in Table I. It is found that training 
functions LM and BR are highly effective (R=0.943 and 
R=0.947 respectively) for FFNN and CFNN. The other training 
functions showed very poor correlation between the observed 
and the predicted values. Therefore, LM and BR training 
functions are used for further development of the best models. 

 

TABLE I.  TRAINING FUNCTION PERFORMANCE - TRAINING STAGE 

Training function R 
LM 0.943 

BR 0.947 

BFG -0.866 
RP 0.142 

CGB -0.729 

CGF -0.882 

OSS 0.016 

VLRGD -0.591 

GD -0.321 

GDM 0.187 

 

A. Chorine Dose ANN Model 

Chlorine dose ANN models were developed using 1849 
data samples of input variables, namely coagulant dose, outlet 
water turbidity, and residual chlorine and chlorine dose as the 
output variable. These variables are closely associated with 
chlorination process. ANN models namely Model I, II and III 
were developed by varying input variables. 

1) Chorine Dose ANN Model I 

For the development of the ANN Model I, one input 
variable, viz coagulant dose is adopted. Sixteen FFNN, CFNN, 
RBFNN, and GRNN models were developed. These models 
were compared using performance measures and it was 
observed that all the models resulted in poor performance 
(R<0.72). Figure 1 shows the plot of the observed and 
predicted series of FFNN, CFNN, RBFNN, and GRNN 
chlorine dose models during the testing. 

 

 
Fig. 1.  Comparison of best chlorine dose ANN Model I (testing stage) 

2) Chorine Dose ANN Model II 

For the development of ANN Model II, two input variables, 
coagulant dose and residual chlorine were adopted. Several 
FFNN, CFNN, RBFNN, and GRNN models were developed 
and tested to get an appropriate network that provided 
satisfactory performance. Standard statistics were observed 
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during the testing stage. σ varied from 0.036 to 0.128, ɣ1 
varied from -1.713 to -8.717 and ɣ2 from 17.667 to 89.15. 
Similarly, error statistics such as MSE varied from 0.001 to 
0.020, MAE from 0.015 to 0.120 and R from 0.695 to 0.97. 
However, there is prominent supremacy in prediction by 
RBFNN 2 model with an SF of 0.1. The comparison of the best 
chlorine dose ANN Model II among FFNN, CFNN, RBFNN, 
and GRNN models is shown in Figure 2.  

 

 
Fig. 2.  Comparison of best chlorine dose ANN Model II (testing stage) 

3) Chorine Dose ANN Model III 

For the development of the ANN Model III, three input 
variables, coagulant dose, outlet water turbidity and residual 
chlorine were adopted. For RBFNN and GRNN models, the 
values of SF varied from 0.1 to 15 whereas training functions 
varied for FFNN and CFNN models and minimum/maximum 
values of performance parameters were noted. The developed 
models were tested in order to get an appropriate network that 
provided satisfactory performance. A comparison of the best 
chlorine dose ANN Model III among FFNN, CFNN, RBFNN, 
and GRNN models is shown in Figure 3 where the nature of 
plot of predicted chlorine dose by RBFNN3 model is closely 
associated with the observed chlorine dose. The performance of 
all ANN models is displayed in Table II, indicating minimum 
and maximum values of standard statistics and error statistics. 
Standard statistics variation was as follows: σ varied from 
0.026 to 1.005, ɣ1 from -10.24 to 1.032 and ɣ2 from 5.309 to 
110.45. Similarly, the error statistics variation was: MSE varied 
from 0.001 to 1.069, MAE varied from 0.009 to 0.98 and R 
from -0.237 to 0.99. The RBFNN model with SF 0.1 produced 
the highest R compared to all other ANN models. In RBFNN 
and GRNN models, it was found that the prediction efficiency 
increased, with decrease in SF value. Further, FFNN and 
CFNN models with BR training function produced good 
prediction when compared to all other training functions. 
However, these models are less efficient. 

 

 
Fig. 3.  Comparison of best chlorine dose ANN Model III (testing stage) 

TABLE II.  MINIMUM AND MAXIMUM VALUES OF STANDARD AND 

ERROR STATISTICS OF CHORINE DOSE ANN MODEL III 

Model Min/Max 
values 

Standard statistics  Error statistics 
Х̅ σ ɣ1 ɣ2 R MSE MAE 

RBFNN 
Min 1.771 0.026 -10.24 7.813 -.237 1.069 0.009 

Max 1.949 1.005 1.032 110.45 0.999 0.001 0.391 

GRNN 
Min 1.851 0.138 -3.786 11.231 0.053 0.023 0.099 

Max 1.91 0.166 -2.324 28.395 0.477 0.051 0.199 

FFNN 
Min 1.867 0.166 -3.107 5.309 0.239 0.025 0.1 

Max 1.918 0.192 -1.035 20.4 0.444 1.028 0.982 

CFNN 
Min 1.882 0.164 -2.263 4.76 0.277 0.035 0.124 

Max 1.898 0.234 -0.51 12.078 0.433 0.143 0.344 

 
There is a prominent supremacy in the prediction with SF 

ranging from 0.1 to 1 in RBFNN models. Therefore, the 
performance parameters of the best RBFNN models during the 
training and testing stages are shown in Tables III and IV. 
Also, it is observed that RBFNN3 model gave better 
performance than RBFNN2 and RBFNN1. 

TABLE III.  STANDARD STATISTICS OF THE BEST RBFNN MODELS  

ANN 
Model 

Training Testing 
Х̅ σ ɣ1 ɣ2 Х̅ σ ɣ1 ɣ2 

Observed 
values 

1.909 0.208 2.097 12.31 1.954 0.171 2.53 12.39 

RBFNN1 1.910 0.137 -1.967 15.71 1.962 0.120 -2.43 12.28 

RBFNN2 1.910 0.044 -4.286 62.15 1.954 0.036 -1.71 17.66 

RBFNN3 1.910 0.026 -3.027 98.89 1.953 0.026 1.032 21.04 

TABLE IV.  PARAMETERS OF THE BEST RBFNN MODELS 

ANN Model
Training Testing 

R MSE MAE R MSE MAE 
RBFNN1 0.715 0.014 0.068 0.753 0.018 0.077 

RBFNN2 0.978 0.002 0.013 0.977 0.001 0.015 

RBFNN3 0.989 0.001 0.006 0.999 0.001 0.009 

 

Table III provides the standard statistics Х̅, σ, ɣ1 and ɣ2 of 
the best ANN models during training and testing. It was found 
that the RBFNN 3 model showed the lowest σ and higher 
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positive ɣ2. This lowest σ implies that the data points are near 
the mean of the database while the higher ɣ2 indicates the set 
of the database had a heavier tail as compared to a normal 
distribution. Furthermore, in Table IV the RBFNN3 model 
delivered excellent performance with R=0.999, MSE=0.001 
and MAE=0.009 during testing stage. Time series plot and 
scatter plots of RBFNN3 model during the testing stage are 
shown in Figures 4 and 5. It is seen that the observed and 
predicted series of chlorine dose are close thereby indicating 
the best model. Overall, the RBFNN model showed excellent 
prediction results. 

 

 
Fig. 4.  Times series plot of RBFNN 3 during testing stage 

 
Fig. 5.  Scatter plot of RBFNN models during testing stage 

B. Coagulant Dose ANN Model 

Regarding coagulant dose ANN models, 44 models were 
tried using FFNN and CFNN networks considering inlet and 
outlet water turbidity as input variables. The database of input 
and output variables required for the ANN modeling consisted 
of 11688 data points. The training and testing data were 
divided as 75:30 and 80:20 during model building. The 
development of ANN models was carried out through several 
steps of training and testing with various training functions as 
depicted in Section II (B). It was observed that BR and LM 
training functions gave good R-values 0.947 and 0.944 
respectively whereas RP, OSS and GDM showed poor 
performance and BFG, CGF, CGB, VLRGD, and GD showed 
negative correlation, indicating their incapability. Therefore, 
LM and BR training functions were used for development of 
FFNN and CFNN models namely FFNN1, FFNN2, CFNN1, 

and CFNN2. During the development of these models, hidden 
nodes varied from 15 to 60, and corresponding R was found to 
range between 0.936 to 0.947. It wass observed that the best 
performance was produced by a CFNN model using BR 
training function with hidden node number=40, with R=0.952 
for training, R=0.922 for testing, and overall R=0.947. The 
CFNN model, due to the weighted connections of input layer 
with the hidden and output layers, mapped the input-output 
relationship very well. Also, BR training function delivers a 
decisive benchmark for finishing the training step and counters 
overtraining of the network. Table V shows the performance of 
the best models during the testing stage. It is seen that both 
FFNN and CFNN models perform equally good, however 
CFNN model showed a slightly better prediction. In the testing 
stage, the CFNN model showed a reduction in MSE (46.85%). 
The error statistics of the CFNN model are very near to the 
observed values. The prediction of coagulant dose by the 
developed best CFNN2 model during testing stage was carried 
out with 248 data points. The observed coagulant dose at the 
WTP is constant for a specific period, which is indicated by the 
straight line, whereas predicted coagulant dose by CFNN2 
model shows variation as shown in Figure 6 

TABLE V.  PERFORMANCE COMPARISON OF THE BEST ANN MODELS 

ANN Models Training function Epochs Hidden nodes R MSE 
FFNN1 Model LM 26 60 0.944 185.09 

FFNN2 Model BR 500 50 0.945 113.13 

CFNN1 Model LM 36 60 0.943 59.22 

CFNN2 Model BR 500 40 0.947 99.28 

 

 
Fig. 6.  Prediction of coagulant dose by the best CFNN2 model during the 
testing stage 

It is seen that the predicted values of the coagulant dose do 
not follow the pattern of the actual coagulant dose from 60 to 
90 data points. This could be due to a wide range of data points 
of inlet water turbidity as well as coagulant dose during the 
ANN training. Despite the significant variations, the average 
actual coagulant dose and predicted coagulant dose show a 
similar trend. Among all the models, the CFNN2 model gave 
the best performance with R=0.947 and MSE=99.28. 
Therefore, the CFNN model is more capable and precise in the 
modeling of the coagulation process. 

IV. MODEL IMPLEMENTATION 

The presence of residual chlorine in the WDN is a major 
concern in India due to water leakage and distribution issues. 
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Hence, the required residual chlorine at the outlet of WTP is an 
important aspect for the distribution network. Two GUIs were 
developed to determine chlorine and coagulant dose using the 
best performed RBFNN3, and CFNN2 models respectively 
(Figures 7-8). In the GUI of chlorine dose, the chlorine dose is 
predicted by using coagulant dose, outlet water turbidity, and 
residual chlorine. The plant operator can decide the chlorine 
dose as per desired residual chlorine (0.2mg/L) at the end of 
WDN. Similarly, in the GUI of coagulant dose, the plant 
operator can decide the coagulant dose by using inlet water 
turbidity and outlet water turbidity (less than 5NTU).  

 

 
Fig. 7.  Snap shot of the chlorine dose ANN model GUI 

 
Fig. 8.  Snap shot of coagulant dose ANN model GUI 

V. CONCLUSION 

The chlorine and coagulant dose in a WTP are typically 
determined through laboratory analysis that requires a long 
experimental time. Thus, GUIs were developed for chlorine 
and coagulant dose using ANNs. During the ANN 
development, it was observed that BR training function had 
better prediction capability than LM, RP, BFG, OSS, CGB, 
CGF, VLRGD, GD and GDM. Among all chlorine dose ANN 
models, the RBFNN3 model (R=0.999) delivered the most 
excellent performance. One of the most important findings of 
the study is that the decreasing order of SF increases the 
performance of RBFNN and GRNN models. For the 
development of coagulant dose models, it was found that the 
number of input variables increased the performance of ANN 
models. All FFNN and CFNN models with LM and BR 
training functions performed well especially for lower values of 
coagulant dose. However, higher values showed under 

prediction. CFNN2 model (R=0.947) with BR training function 
provided the best prediction for the coagulant dose. The GUIs 
of the best ANN models will be very useful tools to plant 
operators and managers for deciding the required chlorine and 
coagulant dose. 
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