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Abstract—In this paper, we focus on a globally variational 

method to restore noisy images corrupted by multiplicative 

gamma noise. The problem is assumed as a regularization 

problem in total variation (TV) framework with data fitting term 

which is deduced by maximizing the a-posteriori probability 

density (MAP estimation). We need to evaluate the proximal 
operator of a data fitting term then we numerically adapt the 

Douglas-Rachford (DR) splitting method to solve the problem. 

Real images with different levels of noise were used. To validate 

the effectiveness of the proposed method, the proposed method 

was compared with other variational models. Our method shows 

effective noise suppression, excellent edge preservation. Measures 
of image quality such as PSNR (peak signal-to-noise ratio), VSNR 

(visual signal-to-noise ratio) and SSIM (structural similarity 

index) explain the proposed model’s good performance. 

Keywords-multiplicative gamma noise; restoration; 

regularization; data fitting; total variation; MAP estimation; 

proximal operator; PSNR; SSIM; VSNR 

I. INTRODUCTION  

Noise suppression is one of the most important tasks in 
image processing. Digital images are very often contaminated 
by various types of noise which degrade them during 
acquisition or transmission. Many filtering techniques can be 
applied to restore the images, the best ones should completely 
remove noise as much as possible and preserve edges. Image 
noise can be classified as additive or multiplicative: In the first 
category the observed image is the sum of the true image and 
the noise, where the noise has often zero-mean and is described 
by its standard deviation. Each pixel in the noisy image is the 
sum of the true pixel value and a random Gaussian distributed 
noise value. In order to reduce an additive noise with a 
Gaussian distribution without sacrificing image detail, many 
approaches are used: wavelets [1-3], stochastic approaches [4], 
principal component analysis-based approaches [3, 5], 
variational [6-9], and proximal approaches [9-14]. In the 

second category, addition becomes multiplication. The 
objective is to restore a degraded image to its original form. 
Speckle noise is a granular noise that inherently exists in and 
degrades the quality of images. This type of noise occurs in 
coherent imaging systems such as medical ultrasound imaging, 
synthetic aperture radar (SAR), sonar, laser imaging and 
microscope images. The multiplicative noise is not independent 
and its distribution is generally not Gaussian, the speckle noise 
appears chaotic and unordered, it is difficult to interpret 
observed data. Speckle denoising is a very rigorous problem 
compared with additive Gaussian noise. To remove speckle 
noise, various methods have been proposed, the most of them 
are based on variational models such as anisotropic diffusion 
[15-18]. Methods introduced in [19-20] concerned nonlocal 
means, and variational approaches. The first nonconvex model 
was proposed in [21], it is called RLO model, it is an 
optimization problem to find the restored image and set up an 
objective function with a total variation term in order to 
preserve significant edges in images under the constraints: the 
mean and the variance of the noise η are assumed to be 1 and σ2 
respectively. To solve the problem the gradient projection 
method is used. The objective function is nonconvex and it is 
very expensive to solve for a global minimizer of the model. 
The second nonconvex model, called AA model, is given in 
[22]. Authors used the classical MAP estimator to create it. To 
solve the problem they employed a gradient method. 

Both multiplicative noise models suffer from non-
convexity. To overcome this difficulty, authors in [23] 
proposed a third model called SO. They transformed the 
multiplication operation into a summation using the logarithm 
and the derivation of this functional is based on the maximum a 
posteriori (MAP). The model is strictly convex in order to 
solve uniqueness problems of solution. In [24], authors studied 
a fast TV minimization method for multiplicative noise 
removal. They modified total variation regularization in the 

Corresponding author: Nacira Diffellah



Engineering, Technology & Applied Science Research Vol. 9, No. 3, 2019, 4188-4195 4189  
  

www.etasr.com Diffellah et al.: A Global Variational Filter for Restoring Noised Images with Gamma Multiplicative … 

 

objective function. In [25], authors proposed a new formulation 
of a nonlinear complex diffusion filter NCDF, a regularization 
factor dependent on data, and an adaptive process. A new 
strictly variational convex model based on a quadratic penalty 
function was proposed in [26], is based on the statistical 
properties of noise, and a primal-dual algorithm was proposed 
to obtain the denoised image. The main idea in [27] was to 
decouple the image variable and the noise variable in the 
convex proposed model. The model, based on the dual formula 
in [28], is solved by using the dual problem using alternating 
direction method of multipliers. The regularization term in [29] 
is the combination of the classical total variation regularizer 
and a nonconvex regularizer. Authors in [30] developed a 
fixed-point proximity algorithm for solving a variational 
model. A model that combines a total generalized variational 
filter with shearlet transform was proposed in [31], an efficient 
alternating direction method of multipliers (ADMM) was 
developed for finding a solution. Our approach proceeds by 
splitting, each non-smooth function is used individually so as to 
yield an easily implementable algorithm, and is involved via its 
proximity operator [11, 32, 33]. We do not directly evaluate the 
proximity operator of total energy, we propose the use of 
proximal splitting methods. The solution is found through 
sequences of computations involving the proximal operator of 
data fitting and the proximal operator of regularization energy 
separately. The main idea is to split into two sub-functions: 
regularization term is the total variation norm and the data 
fitting is the indicator function. Our approach is compared to 
five existing methods: The first method is extended from [22] 
with speckle noise replaced by gamma distribution noise. The 
second is based on the ROF model [23]. The others are 
adaptive complex diffusion [25], convex variational method 
[26], and convex optimization [27]. 

II. METHODOLOGY 

In this section, we will address our proposed method which 
is motivated by the application of proximal algorithm for 
solving the convex optimization problem in the context of 
variational restoration method. Given an observed image f, we 
reconstruct the clean image u assuming f=u.η, where η denotes 
a vector valued Gamma distributed random variable with 
expected value µ=1 and variance σ2: 

1
, 1η σ µ= Γ = =

 
 
 L

   (1) 

where σ is the standard deviation and L is the number of 
observations. The mean and the variance of Gamma 
distribution are given by (2) and (3) respectively: 

1η
Ω Ω

= =∫ ∫
f

u
     (2) 

( )
2

2 2
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Ω Ω
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∫ ∫

f

u
   (3) 

A. Variational Regularization Model of Image Restoration via 

MAP Estimator 

In this subsection, we present a model able to restore 

images corrupted with Gamma multiplicative noise. 

1) Gamma Density 

The distribution of the noise η  takes the form of ( );p Lη : 

( ) ( )
1 0

;

0 0

L L
L L e

if
Lp L

if

η

η η
η

η

−
− >

Γ=

≤







  (4) 

This density can be written as: 

( ) ( )
1
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f L
p L f e

u u L

 −  −    = 
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   (5) 

2) Maximum a Posteriori Estimation 

The Bayes formula delivers the a posteriori probability 
density of u for a given value f: 

( ) ( ) ( )
( )

/ .
/

p f u p u
p u f

p f
=     (6) 

where ( )/p u f  denotes the a-posteriori probability density, 

( )/p f u  means the probability of f given u , ( )p u  is the a-

priori probability density, and ( )p f  is the marginal 

probability or a priori f. We note that the samples of the noise 
on each pixel are mutually independent and identically 

distributed with density ( );p Lη . The Bayesian approach has 

the advantage that it allows incorporating additional prior 

information on u via the a-priori probability density ( )p u into 

the reconstruction process. 

To determine an approximation to the given image, we use 
the maximum a posteriori probability (MAP) estimator which 
maximizes the likelihood and respectively minimizes the 
negative log-likelihood function: 

( )

( ) ( ){ }

ˆ arg max /

ˆ arg min log / log

u

u

u p u f

u p f u p u

∈ ⇔

∈ − −      
 (7) 

Probability densities are depending on the model of the 
noise in the given data. The first term of (7) is a data fidelity 
term: 

( ){ }arg min log / arg min log
  − +        

�
u u

f
p f u L u

u
 (8) 

The second term of (7) is Gibbs a-priori density [22]: 

( ) ( ) ( )1 u u
p u e e

Z

γφ γφ− −= �     (9) 

where Z is the stabilization term, and γ  is a positive 

parameter. Equation (7) can be rewritten as:  
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In this paper, we use total variation (TV) functional as 

regularization energy especially those of 
1� -type. The search 

of estimated image is based on the minimization of two 
functionals [22]: 

( )ˆ arg min log .
u

f
u u TV u

u
λ

  ∈ + +  
  
∫    (11) 

where λ  is the regularization parameter which measures the 
tradeoff between a good fit and a regularized solution. We 
remark that the regularization term is non-differentiable and the 
data term is strongly nonlinear. 

B. Proposed TV Processing of Images with Gamma 
Multiplicative Noise 

We propose a TV based model to restore an image 
corrupted by Gamma multiplicative noise. To solve the 
minimization problem with the TV regularization, we suggest a 
Douglas-Rachford splitting approach. We use proximal 
splitting methods to solve convex optimization problems 
minimizing the energy functional of the form: 

�
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We will express (12) as: 
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The two sub-functions are: ( )
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E u u u= = and 
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Both functions ( )regE u and ( )dataE u are lower semi-

continuous convex and not smooth on all points. The proximal 
operator of each one is defined as follows: 
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1) Research of ProxEreg 

reg
E u is a non-differentiable convex function, we search 

the proximal Pr
regEox u : 

Pr max 0,1
regEox x x

x
γ

γ 
= −  

 
    (14) 

2) Research of ProxEdata 

The novelty introduced in this paper consists of exploiting 
ProxEdata. First we prove the existence and uniqueness of 
ProxEdata then we get its appropriate equation. To reach this 
purpose and for more explanation, we propose the following 

demonstrations:
2data

u f
E

u

−
∇ = and 2

3

2
data

f u
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−
∇ = . If

0 2u f< < , we can prove that 
data

E  is strictly convex. The 

minimizer is unique u f= , the function log
f

u
u

+  has a 

minimum equal to 1 log f+ . We prove the existence of 

ProxEdata: From Example 4.10 in [10]: 
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The proximity operator of 
dataE  is defined by: 
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To solve our problem, we propose to proceed accordingly 
with the following algorithm 1: 
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III. RESULTS AND DISCUSSION 

This section presents the simulation results illustrating the 
performance of the proposed method. All the simulations were 
conducted in MATLAB and UNLocBoX-Matlab convex 
optimization toolbox.  

A. Denoising Performance 

Denoising performance is evaluated using: 

• PSNR: Determines the degradation in the embedded image 
with respect to the original image. PSNR is more consistent 
in the presence of noise compared to SNR. The main 
advantages of PSNR are that it is very fast and easy to 
implement. The value of PSNR is larger, indicating that 
denoising effect is better. 

• VSNR in dB [34]. VSNR quantifies the visual fidelity of 
images. 

• SSIM [35]. Compares two images using information about 
luminous, contrast and structure. SIM is a decimal value 

between [ ]1,1− . 

We compare the original image u  with the restored version 

of image û . The two images should have the same size. 
Equations (22)-(25) give the expressions of the quality 
measures MSE (mean squared error), PSNR (db), VSNR (db), 
and SSIM respectively: 

( ) ( )
1 1

2

0 0

1
ˆ, ,

M N

i j

MSE u i j u i j
MN

− −

= =

= −  ∑∑   (22) 

2

10

255
10 logPSNR

MSE

 
=  

 
    (23) 

( )
10 2

10 log
C u

VSNR
VD

 
=  

 
    (24) 

where C(u) denotes the root–mean-squared (RMS) contrast of 
the original image u and VDis visual distortion. 

( ) ( )( )
( )( )

ˆ ˆ1 2

2 2 2 2

ˆ ˆ1 2

2 2
ˆ,

u u uu

u u u u

C C
SSIM u u

C C

µ µ σ

µ µ σ σ

+ +
=

+ + + +
  (25) 

where ( )ˆ,SSIM u u is the structural SIMilarity index between 

the two images, ˆ,u uµ µ is the average of ˆ,u u  respectively, 

ˆ,
u u

σ σ  is the standard deviation (the square root of variance) of 

ˆ,u u , ˆuuσ  is the standard deviation between u and û , and 

1 2
,C C are positive constants. 

B. Result 

We compared our proposed algorithm to five already above 
mentioned methods: SRAD [15], ROF [23], adaptative method 
[25], convex [26], and convex mult method [27]. Experiments 
were performed on a parrot image of size 256×256 pixels, a 
cameraman of size 256×256 pixels, a cap image of size 
512×718 pixels and a subway image of size 310×450 pixels 
(Figure 1). The digital images were contaminated by 
multiplicative noise with Gamma law of mean one and the 
number L was 1L = , 4L =  and 10L = . 

 

  
(a) (b) 

  
(c) (d) 

Fig. 1.  Test images (a) Parrot, (b) Cameraman, (c) Cap, (d) Subway  

In Figures 2-5, the denoised images are displayed. If the 
level noise is very high ( 1L = ), the reconstructed image looks 
a little different to the original image since few texture and 
some edges and details have disappeared. For the other values 
of L, we can see that our (network) proposed model can 
effectively remove the speckle noise. It is very clear from 
Figure 6 that the restoration results of our model are visually 
better than the other methods’ for all noise levels. The 
quantitative results of all methods are listed in Table I.  
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(a) (a΄) (a΄΄) 

  
(b) (b΄) (b΄΄) 

  
(c) (c΄) (c΄΄) 

  
(d) (d΄) (d΄΄) 

  
(e) (e΄) (e΄΄) 

  
(f) (f΄) (f΄΄) 

  
(g) (g΄) (g΄΄) 

Fig. 2.  Parrot: (a) degraded with Gamma noise 1L = . Restored with (b) 

SRAD, (c) ROF, (d) Adaptative, (e) Covex, (f) Convex mult, (g) Proposed. 

(a΄) degraded with Gamma noise 4L = . Restored with (b΄) SRAD, (c΄) ROF, 

(d΄) Adaptative, (e΄) Covex, (f΄) Convex mult, (g΄) Proposed. (a΄΄) Degraded 

with Gamma noise 10L = . Restored with (b΄΄) SRAD, (c΄΄) ROF, (d΄ )́ 

Adaptative, (e΄΄) Covex, (f) Convex mult, and (g΄΄) Proposed 

 
(a) (a )́ 

 
(b) (b )́ 

 
(c) (c )́ 

 
(d) (d )́ 

 
(e) (e )́ 

 
(f) (f΄) 

 
(g) (g )́ 

Fig. 3.  Subway: (a) Degraded with Gamma noise 1L = . Restored with (b) 

SRAD, (c) ROF, (d) Adaptative, (e) Covex, (f) Convex mult, (g) proposed. 

(a΄) Degraded with Gamma noise 4L = . Restored with (b΄) SRAD, (c )́ ROF, 
(d΄) Adaptative, (e΄) Covex, (f) Convex mult, and (g΄) proposed. 
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(a) (a΄) 

  
(b) (b΄) 

  
(c) (c΄) 

  
(d) (d΄) 

  
(e) (e΄) 

  
(f) (f΄) 

  
 (g) (g΄) 

Fig. 4.  Cap: (a) degraded with Gamma noise 4L = . Restored with (b) 

SRAD, (c) ROF, (d) Adaptative, (e) Covex, (f) Convex mult, (g΄) proposed. 

(a΄) Degraded with Gamma noise 10L = . Restored with (b΄) SRAD, (c )́ 

ROF, (d΄) Adaptative, (e΄) Covex, (f΄) Convex mult, and (g΄) Proposed. 

Table I presents the PSNR, SSSIM and VSNR values for the 
test images of all methods at various noise levels. After 
inspection, it is evident that the proposed method provides 
higher PSNR, SSIM and VSNR for all numbers of look 
compared to other techniques. The proposed technique gives 
the best quality for all the numbers of look. 

   
(a) (a )́ (a΄΄) 

   
(b) (b )́ (b΄΄) 

   
(c) (c )́ (c΄΄) 

   

(d) (d )́ (d΄΄) 

   
(e) (e )́ (e΄΄) 

   

(f) (f )́ (f΄΄) 

   

(g) (g )́ (g΄΄) 

Fig. 5.  Cameraman. (a) Degraded with Gamma noise 1L = . Restored 

with (b) SRAD, (c) ROF, (d) Adaptative, (e) Covex, (f) Convex mult, (g) 

Proposed. (a )́ Degraded with Gamma noise 4L = . Restored with (b΄) SRAD, 

(c΄) ROF, (d΄) Adaptative, (e΄) Covex, (f΄) Convex mult, (g΄) Proposed. (a΄ )́ 

Degraded with Gamma noise 10L = . Restored with (b΄ )́ SRAD, (c΄΄) ROF, 

(d΄΄) Adaptative, (e΄΄) Covex, (f) Convex mult, and (g΄) Proposed. 
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TABLE I.  QUANTITY RESULTS  

Image Method 
L=1 L=4 L=10 

PSNR SSIM VSNR PSNR SSIM VSNR PSNR SSIM VSNR 

Parrot 

SRAD  10.86 0.43 12.56 12.57 0.50 13.46 13.99 0.54 13.95 

ROF 15.11 0.31 13.52 20.13 0.49 16.14 21.03 0.59 17.61 

Adaptative 10.08 0.31 12.75 11.61 0.38 12.92 12.72 0.43 13.14 

Convex method 14.44 0.26 10.26 22.75 0.68 17.97 25.60 0.79 21.72 

Convex mult 9.34 0.08 5.85 19.87 0.51 9.16 23.34 0.65 15.23 

Proposed 24.96 0.83 19.48 26.58 0.83 24.30 28.12 0.87 26.86 

Subway 

SRAD 9.71 0.27 12.44 11.45 0.32 12.41 12.86 0.35 12.43 

ROF 16.59 0.24 12.18 21.73 0.41 13.76 22.20 0.49 14.34 

Adaptative 9.09 0.24 12.91 10.68 0.31 12.81 11.92 0.35 12.91 

Convex 13.70 0.23 8.59 20.83 0.59 12.72 22.72 0.69 14.10 

Convex mult 8.45 0.05 10.57 19.07 0.46 7.24 22.53 0.57 12.44 

Proposed 24.51 0.80 15.06 25.27 0.79 16.38 26.54 0.84 16.66 

Cap 

SRAD 11.56 0.42 13.06 13.09 0.49 12.98 14.53 0.57 14.08 

ROF 15.99 0.35 13.46 23.48 0.61 16.78 27.19 0.75 19.25 

Adaptative 11.66 0.32 14.74 13.33 0.38 14.36 14.61 0.43 14.32 

Convex 15.15 0.21 6.11 25.41 0.72 15.88 29.50 0.86 19.96 

Convex mult 7.51 0.01 inf 20.87 0.50 8.02 26.08 0.73 16.41 

Proposed 31.77 0.93 24.72 31.55 0.94 27.48 33.31 0.96 29.56 

Cameraman 

SRAD 10.90 0.47 9.31 12.75 0.54 10.37 13.97 0.57 10.33 

ROF 17.91 0.27 10.62 19.47 0.41 13.45 21.58 0.50 14.89 

Adaptative 9.71 0.27 10.31 11.34 0.34 10.59 12.46 0.37 10.87 

Convex 13.78 0.21 5.90 22.72 0.63 15.56 25.26 0.76 18.51 

Convex mult 7.28 0.03 12.08 17.98 0.43 6.69 21.72 0.57 13.74 

Proposed 29.87 0.93 23.89 30.14 0.93 29.82 32.25 0.95 33.92 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 6.  Part of subway image. (a) Original image, (b) Degraded with Gamma noise 4L = . Restored with (c) SRAD, (d) ROF, (e) Adaptative, (f) Convex, (g) 

Convex mult, and (h) Proposed. 

IV. CONCLUSION  

In this paper, variational methods have been proposed to 
handle the restoration problem under the Gamma distributed 

multiplicative noise (with mean one and deviation
1

L
). The 

proposed model is strictly convex if noisy image f>0 and 
original image 0<u<2f. The proposed model consists of a data 
fitting term, and a total variation regularizer. Image TV is 
utilized as the regularization term in order to preserve 

significant edges in images. To solve the restoration problem, 
the Douglas-Rachford splitting algorithm was used. For finding 
the solution of this algorithm, we described and searched the 
proximity operators of two terms. We have proposed a new 
proximal data fitting for the solution of optimization problem 
from the minimization of energy functional. Numerical 
experiments demonstrate that the proposed model has a good 
performance and produces the best values of PSNR, SSIM and 
a good value of VSNR. The proposed approach substantially 
reduces the “staircase” and “blurring” effect, preserves more 
details and suppress Gamma multiplicative noise successfully. 
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This paper opens a new door to perspectives, future work will 
include variational method using the proposed approach to 
restore the noised and blurred images corrupted by both 
multiplicative and additive noise. Moreover, we can exploit this 
idea for the denoising of image sequences [37]. 
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