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Abstract—Multi-objective optimization is an NP-hard problem. 

ADSE (automatic design space exploration) using heuristics has 

been proved to be an appropriate method in resolving this 

problem. This paper presents a hyper-heuristic technique to solve 

the DSE issue in computer architecture. Two algorithms are 

proposed. A hyper-heuristic layer has been added to the FADSE 
(framework for automatic design space exploration) and relevant 

algorithms have been implemented. The benefits of already 

existing multi-objective algorithms have been joined in order to 

strengthen the proposed algorithms. The proposed algorithms, 

namely RRSNS (round-robin scheduling NSGA-II and SPEA2) 

and RSNS (random scheduling NSGA-II and SPEA2) have been 

evaluated for the ADSE problem. The results have been 
compared with NSGA-II and SPEA2 algorithms. Results show 

that the proposed methodologies give competitive outcomes in 

comparison with NSGA-II and SPEA2. 

Keywords-hyper-heuristic; multi-objective optimization; design 

space exploration; x86 processor   

I. INTRODUCTION  

Computer architectures are getting more complex day by 
day. As a result, the optimization of multiple objectives 
becomes harder too. This occurs because usually the objectives 
are contradictory to each other. It has been recognized that 
automatic design space exploration (ADSE) is a good solution 
to the stated issue. In this work, selection hyper-heuristics have 
been applied in conjunction with All Moves as acceptance 
criteria. Simple random selection hyper-heuristic method has 
been used. This hyper-heuristic method is quite dominant in the 
field because of its execution according to the circumstances. 
This heuristic type uses existing heuristic methods [1]. 
Numerous low level heuristics can be combined depending on 
the problem. Commonly, there are two modules of the 
traditional selection hyper-heuristic model [2]. These include 
low level heuristics selection and acceptance. Selection hyper-
heuristic has been extensively used in different optimization 
issues, some of them discussed below. But, to the best of our 
knowledge, the literature is relatively poor in the application of 
selection hyper-heuristics in the ADSE field using the FADSE 
tool. 

In [3], a meta optimization function that uses various meta-
heuristics simultaneously to obtain better results in appropriate 
time has been introduced. The difference in our approach and 
in [3] is the use of round-robin and the random hyper-heuristic 
introduction in FADSE to optimize the process of DSE. In this 
work, several meta-heuristic approaches in random and round-
robin have been used to acquire the optimized solution in 
appropriate time. Our scheme has been improving the 
convergence speed. Additionally, it also provides diversified 
multi-objective optimizations of computer architecture DSE 
problem. An additional layer has been added to FADSE. The 
modified hyper-heuristic algorithms RRSNS (Round Robin 
Scheduling NSGA-II [16] and SPEA2 [11]) and RSNS 
(Random Scheduling NSGA-II and SPEA2) are presented in 
this paper.  

II. RELATED WORK 

This section contains details about the methods and 
approaches used in this work. The use of the related variants in 
previous works is also discussed. The tools and simulators used 
for implementation and the algorithms used are presented in 
this section. 

A. Selection Hyper-heuristic 

Selection hyper-heuristic implementation is one of the 
focusing areas of this paper. In [12], authors analyzed multiple 
methodologies of hyper-heuristics for the scheduling problem. 
They claim that hyper-heuristics yield better results than meta-
heuristics in some scenarios. However, the authors have not 
revealed the details of their introduced hyper-heuristic 
methods. In [4], a selection hyper-heuristic-based method has 
been introduced. Authors combined the two components of 
hyper-heuristic in a fashion that combines late acceptance with 
random selection criteria. The results have been compared with 
exiting approaches to evaluate the performance. It has been 
concluded that this combination provides remarkable results. In 
[13], a methodology has been introduced that uses selection 
hyper-heuristic. In addition, acceptance criteria used were 
stimulated. These acceptance criteria will help in providing 
feedback for future selections. 
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In [14], selection hyper-heuristic has been applied to 
dynamic optimization problems. Authors reported the 
sustainability of selection hyper-heuristic in dynamic 
environments. Classical choice function heuristics selection 
method and modified choice function heuristics selection 
method are variants of each other. In [5], it has been argued 
that modified choice function gives good results when low 
level heuristics are absent. Authors analyzed the results of 
modified choice function after the addition of crossover low 
level heuristics. 

B. FADSE Tool 

In this paper, the tool used for design exploration is FADSE 
(framework for automatic design space exploration). FADSE is 
the most commonly used tool for ADSE (automatic design 
space exploration) in computer architecture [6]. Authors 
incorporated jMetal library with FADSE to take benefit of a 
huge number of multi-objective algorithms. Different tools 
have been found which worked on heuristics before the 
development of FADSE, e.g. a statistical exploration algorithm 
based tool ArchExplorer [7] which requires design of the 
system to perform optimization. Another similar tool is 
M3Explorer [8] which is relatively more close to FADSE in its 
working. NASA [9] is also a popular tool for DSE. It has 
provided a simple interface for simulators to integrate. There 
are many other tools for DSE [6] but FADSE is more 
generalized and capable of solving complex computational 
problems. 

C. SNIPER Simulator 

In this work, SNIPER simulator has been used. It is a high 
speed simulator for x86 architecture. SNIPER has been 
developed for calculating the performance of a processor, the 
energy consumed by the processor and the integration area 
[15]. SNIPER has been extensively exploited for obtaining 
results. 

D. Multi-Objective Algorithms 

In this work, two evolutionary multi-objective algorithms of 
jMetal library have been exploited. The term multi-objective is 
used because in these problems, multiple contradictory goals 
need to be achieved. NSGA-II and SPEA2 used in this work 
are the most widely accepted algorithms to obtain the desired 
goals in this field [10]. In case of several objectives, the stated 
two algorithms perform better than other multi-objective 
algorithms [11]. 

TABLE I.  NOTATIONS USED IN ALGORITHMS 

Po Initial randomly generated population 

Psize Population size 

Emax Maximum evaluation count 

Ecurrent Current evaluation count 

Psolnew Population generated by low level heuristics 

Psol Problem solution 

 

III. RESEARCH METHODOLOGY 

This section presents the hyper-heuristic methodology used 
to accelerate the DSE process of a multi core processor. It has 
been done by using multiple meta-heuristics in random and 

round-robin fashion to obtain quasi-optimal solution. The 
objective is to obtain better results in appropriate time. This 
strategy improves convergence speed. Moreover, it also 
provides diversity of multi-objective optimization of DSE 
problem of computer architecture. FADSE framework [6] has 
been modified by adding a hyper-heuristic layer as shown in 
Figure 1. Two selection hyper-heuristic models (RRSNS and 
RSNS) have been introduced in FADSE. In RRSNS, round-
robin fashion scheme [17] has been used to run two state-of-
the-art multi-objective optimization algorithms (NSGA-II and 
SPEA2) as LLH (low level heuristic). There are two variations 
of RRSNS. RRSNS1 schedules NSGA-II first and then SPEA2 
and in RRSNS2, SPEA2 has been scheduled first then NSGA-
II. In RSNS, Simple random [12] hyper heuristic selection 
mechanism has been used to find the quasi-optimal solution. In 
both RRSNS and RSNS models All Moves [5] move 
acceptance method has been used. 

 

 
Fig. 1.  FADSE with hyper-heuristic layer 

Table I displays the notations used in this study. The pseudo 
codes of RRSNS and RSNS are shown in Figures 2 and 3 
respectively. In RRSNS, FADSE is configured by using its 
configuration file in which the number of objectives, 
parameters of processor architecture to be tuned, and the 
database configuration to reused already simulated results have 
been defined. Also, the number of FADSE clients and 
configuration parameters of NSGA-II and SPEA2 meta-
heuristic algorithms and their order of scheduling have been 
defined. After initialization, a random solution of the problem 
is produced and passes as a parent population to the first one in 
the round-robin order of LLH. LLH then applies the 
evolutionary operation (crossover, mutation) and generate 
offspring population. The generated individuals are evaluated 
using sniper simulator. Sniper simulator is used as the objective 
function of the ADSE process. When the first one produces the 
solution of the problem, it is passed to the next order LLH and 
so on. The last one gives its solution to the first on the LLH list. 
The iterative process continues until the termination condition 
is reached i.e. when the evaluation count reached its maximum 
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limit defined in the initialization phase. In RSNS, the 
initialization stage is similar to the RRSNS except that the 
order of LLH is not defined. Instead, the order is generated 
randomly. All the generated solutions are accepted as parent 
population of the next iteration. The iteration is finished when 
the current evaluation count equals to the maximum evaluation 
count.  

 

1 Procedure RRSNS() 

 Begin 

2 Initilization() /* initilize NSGA-II and SPEA2 algorithum, initial random 

population Po, Psize, Emax       Ecurrent=0*/ 

3 Selected_order_list_of_LLH=List_perturbative_LLH() 

4 Psol=Po/* assign randomly generated solution as a problem solution*/ 

5 While Ecurrent < Emax do 

6 For i=1 to Selected_order_list_of_LLH.length 

7 Psolnew=Generate_population_through_LLH(Psol) 

8 Psol=Psolnew /*update the problem solution with newly generated solution*/ 

9 End loop 

10 End while 

11 Return Psol 

12 End 

Fig. 2.  RRSNS algorithm 

1 Procedure RSNS() 

 Begin 

2 Initilization() /* initilize NSGA-II and SPEA2 algorithum, initial random 

population Po, Psize, Emax       Ecurrent=0*/ 

3 Psol=Po/* assign randomly generated solution as a problem solution*/ 

4 While Ecurrent < Emax do 

5 Selected_LLH=Randomly_select_LLH(List_of_perturbative_LLH() 

6 Psolnew=Generate_population_through_LLH(Psol) 

7 Psol=Psolnew /*update the problem solution with newly generated solution*/ 

8 End while 

9 Return Psol 

10 End 

Fig. 3.  RSNS Algorithm 

TABLE II.  HARDWARE PARAMETERS TO TUNE 

Microarchitecture parameter 
Range of values 

Min Max Individual 

Number of cores 1 4 3 

DRAM interleaving controllers 1 64 7 

L1 data cache associativity 8 16 2 

L1 data cache size [KB] 32 256 4 

L2 cache associativity 8 16 2 

L2 cache size [KB] 32 2048 7 

L3 cache associativity 8 16 2 

L3 cache size [KB] 128 32768 9 

L3 cache shared cores 1 16 5 
 

 

The DSE process of 211,680 configurations of the x86 
multi-core processor has been used. The list of parameters and 
their possible values are shown in Table II. The possible values 
of each parameter are exponents of 2 i.e. in case of the number 
of cores, the possible values are {1, 2, 4}. The DSE process 
was done 5 times with 2 objectives and 6 x86 architectural 
parameters. Seven SPLASH-2 [18] benchmarks (fmm, lu.cont, 
ocean.cont, radix, water.sp, volrend, fft) were used to apply on 
each individual in the DSE process. Intel Quad core i7, 3.2GHz 
processor with 4GB RAM has been used to implement the DSE 
process. Two FADSE clients were used, running in distributed 
environment with one FADSE server. Fifty individuals per 
generation and a total of 50 generations were used. The 

configuration parameters of the multi-objective optimization 
algorithms used in the study are shown in Table III. 

TABLE III.  CONFIGURATION PARAMETERS  

Parameters Value 

Crossover operator Single point 

Crossover probability 0.90 

Mutation operator Bit-flip 

Mutation probability 0.16 

Selection operator Binary tournament 

Population size 50 

Archive size 50 

Teremination condition After 50 generations 
 

IV. RESULTS 

Comparison of the proposed algorithms (RRSNS and 
RSNS) has been done with already presented state-of-the-art 
multi-objective evolutionary algorithms (NSGA-II and 
SPEA2). Initially the two variations of RRSNS (RRSNS1 and 
RRSNS2 were compared. The main difference between these 
variations is that in RRSNS1, NSGA-II is scheduled first and in 
RRSNS2, SPEA2 is scheduled first using the coverage quality 
metric [19]. The coverage metric can be used to compare two 
different multi-objective algorithms. It gives quantitative 
results regarding the percent of an algorithms’ individuals are 
non-dominated by the individuals of another algorithm. Figure 
4 shows that the coverage of RRSNS1 is better than 
RRSNS2’s. The results are mostly equal in the first 15 
generations and then RRSNS1 gives better results. Figure 5 
illustrates that both RRSNS1 and RSNS are competing each 
other after the 27th generation but overall the RSNS gives 
better results.  

 
Fig. 4.  Coverage comparison between RRSNS1 and RRSNS2 

 
Fig. 5.  Coverage comparison between RRSNS1 and RSNS 
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Figures 6 and 7 show that RRSNS and RSNS give better 
results than NSGA-II. Figures 8 and 9 show that RRSNS and 
RSNS give better coverage than SPEA2. In Figure 8 it can be 
seen that in the initial generation SPEA2 gives good readings 
but after the 17th generation RRSNS1 gives better results. 

 

 
Fig. 6.  Coverage comparison between NSGA-II and RRSNS1 

 
Fig. 7.  Coverage comparison between NSGA-II and RSNS 

 
Fig. 8.  Coverage comparison between RRSNS1 and SPEA2 

 
Fig. 9.  Coverage comparison between RSNS and SPEA2 

In Figure 10, the mentioned algorithms using hyper-volume 
metric [19] are compared. It can be seen that RRSNS1 
convergences faster than all the other algorithms. SPEA2 
reaches its maximum at the very beginning but stucks in local 
minima due to the archiving mechanism and density 
computation method (duplicate solution) [11]. RSNS is fast and 
reaches its maximum hyper-volume at the 16th generation as 
compared to the RRSNS1, who reached its maximum at 37th 
the generation. Both RRSNS1 and RSNS give better hyper-
volume than NSGA-II and SPEA2 because they both use the 
strengths of both NSGA-II and SPEA2. The two set hyper-
volume (TSHD) metric [20] shown in Figure 11 shows that 
~94% of the hyper-volume is common to both the RRSNS1 
and RSNS at the initial stage. After that the common hyper-
volume percentage increases up to ~99.5%. Initially RSNS 
contribution in the non-dominated hyper-volume is good up to 
the 21th generation, then RRSNS1 contribution is greater than 
RSNS up to the final generation.  

 
Fig. 10.  Hypervolume comparison 

 
Fig. 11.  Two set hypervolume difference (RRSNS1 vs RSNS) 

 
Fig. 12.  Two set hypervolume difference (NSGA-II vs RRSNS1) 
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Figures 12 and 13 show the TSHD between NSGA-II vs 
RRSNS1 and NSGA-II vs RSNS. Figure 12 illustrates that 
NSGA-II non-dominated hyper-volume is good before the 17th 
generation. After that, RRSNS1 produces greater non-
dominated hyper-volume, although all the time ~97% of the 
total hyper-volume is common among these two. It can be 
interpreted form Figure 13, that most of the time RSNS gives 
all non-dominated hyper-volume, but it can also be seen that 
the difference is only 2% and 98% non-dominated hyper-
volume is common. Similarly, in Figures 14 and 15 the 
comparison of TSHD between RRSNS1 vs SPEA2 and RSNS 
vs SPEA2 is shown. It can be observed in both Figures that 
initially SPEA2 gives better solution, but later on RRSNS1 and 
RSNS produce superior hyper-volume than SPEA2. In Figure 
16, the Pareto front approximation of all compared algorithms 
is shown.  

 

 
Fig. 13.  Two set hypervolume difference (NSGA-II vs RSNS) 

 
Fig. 14.  Two set hypervolume difference (RRSNS1 vs SPEA2) 

 
Fig. 15.  Two set hypervolume difference (RSNS vs SPEA2) 

 
Fig. 16.  Pareto front approximation RRSNS, RSNS, NSGA-II ans SPEA2 

From Figure 16, it can be seen that RRSNS gives a unique 
solution which no other algorithm discovered during the ADSE 
process. Also, RSNS gives a more dominated solution as 
compared to NSGA-II and SPEA2. 

V. CONCLUSION 

Hyper-heuristic is a heuristic that runs on top of the existing 
or new low level heuristics to get the advantages of a wide 
range of existing or new heuristics to solve complex multi-
objective optimization problems. In this paper, two hyper-
heuristic selection algorithms have been proposed to solve the 
DSE process of an x86 multi core processor. A new hyper-
heuristic layer has been added in FADSE and two algorithms 
were proposed are implemented. The biggest advantage of our 
proposed algorithms (RRSNS, RSNS) is that they use the 
combined advantages of existing multi-objective algorithms to 
solve the DSE problem. The proposed RRSNS and RSNS 
algorithms have been evaluated for ADSE problem and 
compared with two state-of-the-art multi-objective algorithms, 
NSGA-II and SPEA2. Results indicate that the proposed 
approaches give competitive results compared to NSGA-II and 
SPEA2. 

In the future, more existing multi-objective algorithms can 
be added in RRSNS and RSNS so that they produce more 
diversified and prominent solutions for the DSE process of 
computer architecture. 
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