
Engineering, Technology & Applied Science Research Vol. 9, No. 4, 2019, 4338-4341 4338

www.etasr.com Vidal-Silva et al.: JPIAspectZ: A Formal Requirement Specification Language for Joint Point Interface …

JPIAspectZ: A Formal Requirement Specification

Language for Joint Point Interface AOP Applications

Cristian Vidal-Silva

Faculty of Economics and Administration,
Catholic University of the North,

Antofagasta, Chile

cristian.vidal@ucn.cl

Trung Pham

Faculty of Economics and Business,

University of Talca,
Talca, Chile

tpham@utalca.cl

Luis Alberto Urzua

Faculty of Health,

Santo Tomas University,

Chile Talca, Chile
lurzua@santotomas.cl

Erika Madariaga

Faculty of Engineering,
Bernardo O’Higgins University,

Santiago, Chile

erika.madariaga@ubo.cl

Franklin Johnson

Computing and Information Department,

University of Playa Ancha,
Valparaiso, Chile

franklin.johnson@upla.cl

Luis Carter

Ingenieria Civil Industrial,

Facultad de Ingenieria,

Universidad Autonoma de Chile, Chile
luis.carter@uautonoma.cl

Abstract—Aspect-oriented software development (AOSD) solves

a few issues of the object-oriented software development (OOSD)

approach and adds a few more concerning modules and their

relationships. Join point interface (JPI) is an AOSD methodology

that by the definition of the interface between advised artifacts

and aspects solves associated AOSD issues to get software with a
high modularity level. Looking for a JPI software development

approach, this article proposes and exemplifies the use of

JPIAspectZ, an extension of the formal aspect-oriented language

AspectZ for the software JPI requirement specifications. Mainly,

JPIAspectZ looks for a concept and model consistency in a JPI

software development process. Since the main JPI characteristics

are the joining point interfaces definitions, i. e. explicit
associations definition between aspects and advised modules,

thus, by JPI, classes are no longer oblivious of possible

interaction with aspects, and aspects, for their action

effectiveness, do not depend anymore on signatures of advisable

module components. JPIAspectZ fully supports these JPI

principles. As JPI application examples, this article shows the
formal requirements specification for classic aspect-oriented and

JPI examples, along with describing the advantages and
disadvantages of this language.

Keywords-JPIAspectZ; JPI; AspectZ; aspects; join point

interface

I. INTRODUCTION

AOSD permits modularizing crosscutting concerns in
OOSD stages [1]. Because AOSD was born at the object-
oriented (OO) programming stage, to reach a complete

transparency of concepts and design in the AOSD process
seems a complex task. Looking for a transparency in the
AOSD process, different proposals of modeling language
extensions already exist to support AOSD such as aspect-
oriented UML use case diagrams [2] and aspect-oriented UML
class diagram [3]. Authors in [4] present a survey of aspect-
oriented UML language proposals. Nevertheless, only a few
articles about formal aspect-oriented languages for requirement
specification exist so far. Authors in [5, 6] describe and apply
AspectZ, authors in [7, 8] describe OOAspectZ, and authors in
[9] illustrate the use of an aspect-oriented alloy version.
Authors in [10] report that a double-dependency between base
modules and aspects exists in traditional AOSD solutions. To
solve this issue, the works of [10-12] propose and apply join
point interface (JPI) instances between classes and aspects.
Thus, with the purpose of obtaining JPI solutions and getting
transparency of concepts in stages of the AOSD-JPI process,
this article proposes and applies JPIAspectZ, an extension of
OOAspectZ [7, 8], for requirements specification of JPI
software applications.

II. ASPECT ORIENTED PROGRAMMING AND JPI

Authors in [1] proposed aspect-oriented programming
(AOP) to modularize crosscutting concerns as aspects in OOP.
Aspects advise classes like events, i.e. aspects introduce
behavior and structural elements such as methods and attributes
into classes. Nevertheless, as authors in [10] indicate, AOP
presents implicit dependencies between advised classes and

Corresponding author: Cristian Vidal-Silva

Engineering, Technology & Applied Science Research Vol. 9, No. 4, 2019, 4338-4341 4339

www.etasr.com Vidal-Silva et al.: JPIAspectZ: A Formal Requirement Specification Language for Joint Point Interface …

aspects. First, aspects define pointcut rules (PCs) for advisable
class behavior, and, as a result, instances of those classes are
entirely oblivious of possible changes in their components,
methods, and attributes. Second, aspects can be ineffective or
spurious for signature changes on advised methods of target
classes. As authors in [10, 11] mention, the last issue is known
as the fragile pointcut problem. Authors in [10] indicate that
traditional AOP like Aspect-J solutions compromise the
independent development of base code and aspect modules
since developers of base code, and aspects must obtain a global
knowledge about all program components and their
associations, i.e. they must know all the details about aspects,
classes, and their relations. To isolate crosscutting concerns
and get modular AOP programs without the mentioned implicit
dependencies, authors in [10] describe the JPI programming
methodology. JPI introduces the idea of join point interface on
classic AOP. Like classic AOP [10, 11], for JPI applications,
aspects represent crosscutting functionalities, but without PCs.
Aspects in JPI only present their implementation of join point
interfaces. Besides, in JPI, non-oblivious advised classes
exhibit explicit join point interfaces, that is, classes know about
potential changes on their methods. Figures 1 and 2 [10]
illustrate dependencies between aspects and classes in classic
AOP and JPI applications, respectively.

Fig. 1. Base and aspects modules association in classic AOP.

Fig. 2. Base and aspect modules association in JPI.

III. JPIASPECTZ PRINCIPLES

Z [13] and Object-Z [14] are formal languages for software
requirement specification. Specifically, Z is the classic formal
specification language without the direct support of object-
oriented abstractions like classes and inheritance, and Object-Z
is an extension of Z to support OOSD principles. Likewise,
AspectZ [5, 6] and OOAspectZ [7, 8] represent Z extensions
for requirements specification of AOP applications and their
integration with Z and Object-Z, respectively. Considering JPI
ideas, this article describes JPIAspectZ, an OOAspectZ
extension to model JPI applications and its integration with
Object-Z. The main elements of a JPIAspectZ formal
specification are:

Base Modules: Unlike AspectZ and OOAspectZ which
present oblivious base modules, JPIAspectZ base modules are
specified as Object-Z class modules which include an exhibit
rule concerning advisable operations of advised class instances.
Figure 5 shows the structure of a JPIAspectZ class schema, JPI
schema, and Aspect schema. Since the declaration part of an

Object-Z operation schema permits defining operation
parameters, when looking for a transparency of concepts and
design for JPI applications, an exhibit rule is definable in two
sections: first, exhibits JPI for the join point interface instances
which the class exhibits, and second, a set of conditions for the
join point event. So far, JPIAspectZ considers basic AOP and
JPI conditions for dynamic and static crosscuts, i.e. call
operation, execution operation, logic connectors &&, ||, !; args
(arguments list) to identify catchable method arguments,
this(object) to determine the object on which the advisable
method operates, and target(object) to identify the object owner
of the advisable method.

Join Point Interface: In JPIAspectZ, operation schemas
starting with the JPI initials represent join point interfaces (JPI
schemas) for a system specification. For example, Figure 6
shows JPIUpdateX and JPIUpdateY. Furthermore, JPI schemas
only present a declaration section to indicate their list of
parameters.

Aspects: JPIAspectZ Aspects-schemas are like ObjectZ
class diagrams labeled with the phrase aspect. Aspect-schemas
include state schemas to define attributes and invariants and
operation schemas for the schema advice operations. As a
distinction regarding class schemas, aspect-schemas can
indicate the occurrence time for operations (before, after, and
around) to specify the kind of advice. Semantically, aspect-
schemas advise operation schemas, usually for inserting new
methods in the advised classes, for adding behavior at the
beginning, around, and end on advised operations schemas.
From advised method schemas and associated aspect schemas,
JPIAspectZ permits obtaining woven schemas. It is relevant to
highlight the modular evolution from AspectZ, OOAspectZ,
and JPIAspectZ schemas as Figure 3 [5], Figure 4 [7, 8], and
Figure 5 respectively present. Note that for the first two, base
schema, Z operation schema and ObjectZ class schema,
AspectZ aspects operate over oblivious advised elements.
Nevertheless, for the JPI philosophy, in JPIAspectZ, the
aspects and classes know about interfaces to implement and
exhibit, respectively.

Fig. 3. Classic AspectZ aspect schema

As Figure 5 describes, JPIAspectZ considers advisable
classes which exhibit advisable operations in their state schema
(Figure 5(a)), Join Point Interface (JPI) schemas as a link
between advisable classes and aspects adviser, and aspects who

Engineering, Technology & Applied Science Research Vol. 9, No. 4, 2019, 4338-4341 4340

www.etasr.com Vidal-Silva et al.: JPIAspectZ: A Formal Requirement Specification Language for Joint Point Interface …

will advise those classes in the ocurrence of join points in
objects of the class (Figure 5(b)).

Fig. 4. OOAspectZ aspect schema.

(a)

(b)

Fig. 5. Base and aspect modules association in JPIAspectZ: (a) Advised

class schema, (b) JPI and aspect-schemas

IV. APPLICATION EXAMPLES

The Painting System [7] is a classic AO example that
presents classes Point and Line which are Shapes, and each
Line instance is composed of a few Point instances. The main
idea is to illustrate the updating screen process as an external
behavior. An illustration of the UML class diagram can be seen
in [7], which presents an interface Shape to enclose Point and
Line classes, and each Line instance is composed of two Point
instances, P1 and P2. Note that for classic AO, both classes
obliviously wait for advices from the aspect UpdateSignaling
concerning the pointcut rules definition outside the classes. A
JPI UML class diagram that includes the main JPI elements for
the Painting System, that is, non-oblivious classes which
exhibit JPI instances and aspect that implements those
interfaces can be seen in [15]. Clearly, for exhibits and
implements rules, classes are not more oblivious, and aspect
does not directly refer to classes: classes exhibit JPI and
aspects implement those interfaces. We recommend reviewing

[15] for more details about JPI. As a JPI example, [10, 12]
show a Shopping session ‘running example’ of an e-commerce
system (ShoppingSession system). This example presents a
join point interface checkingOut, a class ShoppingSession that
exhibits checkingOut and an aspect Discount that implements
checkingOut for around kind of advice.

(a)

(b)

(c)

(d)

Fig. 6. Painting system JPIAspectZ formal specification (a) advised class

schema, (b) advisable class Point, (c) advised class Line, (d) JPI instances and

Aspect-Schema

V. EXPERIMENTS AND RESULTS

Figure 6 presents the JPIAspectZ specification for the
Painting system: a Shape interface, Point and Line classes, JPI
instances JPIUpdateX, JPIUpdateY, and JPIMove, and aspect
Aspect1Painting. Point and Line classes exhibit JPI instances,
class Point exhibit JPIUpdateX and JPIUpdateY, and class
Line exhibit JPIMove, whereas Aspect1Painting implements
these JPI instances. Figure 6 presents the model’s consistency.

Engineering, Technology & Applied Science Research Vol. 9, No. 4, 2019, 4338-4341 4341

www.etasr.com Vidal-Silva et al.: JPIAspectZ: A Formal Requirement Specification Language for Joint Point Interface …

VI. CONCLUSIONS

After reviewing JPIAspectZ examples for the Painting and
Shop-pingSession systems, we can argue a clear consistency
exists between JPI models and JPI code. Furthermore,
JPIAspectZ includes JPI practical details such as exhibits and
association among JPI components, that i.e., aspects, JPI, and
classes to represent complete JPI applications using called
external advises is possible. Thus, JPIAspectZ permits formal
models of JPI applications without closure join points [16].

This article presented JPIAspectZ that permits specifying
formal requirements for JPI applications, i.e. nondependent
classes and aspects according to the JPI central principle.
Besides, this extended JPI abstraction demonstrates that
consistency and transparency of models and concepts for a JPI
software development process is attainable, specifically, a
consistency between requirements and structural models, and
requirements and code. To achieve real consistency between
structural models and JPI solutions code modules seems direct.
A formal proof of this consistency represents a future work
scope for the authors. Furthermore, considering future work,
authors want to continue proposing extensions on JPIAspectZ
to model closure join points as well as more advanced dynamic
crosscuts [16]. Besides, we propose the developing of a
JPIAspectZ specification validation tool for automatic
validation of JPIAspectZ specifications.

REFERENCES

[1] G. Kiczales, “Aspect-oriented programming”, ACM Computing
Surveys, Vol. 28, No. 4, 1996

[2] I. Jacobson, P. W. Ng, Aspect-Oriented Software Development with Use

Cases, Addison Wesley Professional, 2004

[3] F. Wedyan, S. Ghosh, L. R. Vijayasarathy, “An approach and tool for
measurement of state variable based data-flow test coverage for aspect-

oriented programs”, Information and Software Technology, Vol. 59, pp.
233–254, 2015

[4] M. Wimmer, A. Schauerhuber, G. Kappel, W. Retschitzegger, W.

Schwinger, E. Kapsammer, “A survey on UML based aspect-oriented
design modeling”, ACM Computing Surveys, Vol. 43, No. 4, pp. 28:1–

28:59, 2011

[5] Y. Huiqun, L. Dongmei, Y. Li, H. Xudong, “Formal Aspect-Oriented

Modeling and Analysis by Aspect-Z”, 17th International Conference on
Software Engineering and Knowledge Engineering, Taipei, Taiwan, July

14-16, 2005

[6] C. V. Silva, R. Saens, C. Del Rio, R. Villarroel, “Aspect-oriented
modeling: Applying aspect-oriented UML use cases and extending

aspect-z”, Computing and Informatics, Vol. 32, No. 3, pp. 573–593,
2013

[7] C. V. Silva, R. Saens, C. Del Rio, R. Villarroel, “OOAspectZ y

diagramas de clase orientados a los aspectos para la modelacion
orientada a aspectos (MSOA)”, Ingenieria e Investigacion , Vol. 33, No.

3, pp. 66–71, 2013 (in Spanish)

[8] C. V. Silva, R. Villarroel, R. S. Simon, R. Saens, T. Tigero, C. Del Rio,
“Aspect-Oriented Formal Modeling: (AspectZ + Object-Z) =

OOAspectZ”, Computing and Informatics, Vol. 34, No. 5, pp. 996–
1016, 2015

[9] F. Mostefaoui, J. Vachon, “Verification of Aspect-UML Models Using

Alloy”, 10th International Workshop on Aspect-Oriented Modeling,
Vancouver, Canada, March 12-12, 2007

[10] E. Bodden, E. Tanter, M. Inostroza, “Join point interfaces for safe and

flexible decoupling of aspects”, ACM Transactions on Software
Engineering and Methodology, Vol. 23, No. 1, pp. A:1–A:42, 2014

[11] E. Bodden, “Closure Join Points: Block Join Points without Surprises”,
Tenth International Conference on Aspect-Oriented Software

Development, Porto de Galinhas, Brazil, March 21-25, 2011

[12] M. Inostroza, E. Tanter, E. Bodden, “Join Point Interfaces for Modular
Reasoning in Aspect-Oriented Programs”, 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of
Software Engineering, Szeged, Hungary, September 5-9, 2011

[13] J. Woodcock, J. Davies, Using Z: Specification, Refinement, and Proof,

Prentice-Hall, 1996

[14] G. Smith, The Object-Z Specification Language, Kluwer Academic
Publishers, 2000

[15] C. V. Silva, R. Villarroel, “JPI UML: UML Class and Sequence

Diagrams Proposal for Aspect-Oriented JPI Applications”, 33rd
International Conference of the Chilean Computer Science Society,

Talca, Chile, November 8-14, 2014

[16] S. Apel, D. Batory, C. Kastner, G. Saake, Feature-Oriented Software
Product Lines: Concepts and Implementation, Springer, 2016

