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Abstract—This paper proposes the prediction of hydrate 

formation pressure in deepwater pipeline with an approach of 

intelligent optimization. The proposed novel correlation of 

hydrate formation is using the function of ordinary differential 

equation. The developed optimization prediction model was 

founded on the constant coefficients which were examined by a 
multiple set of experimental data of methane (CH4), ethane 

(C2H6), propane (C3H8), iso-butane (iC4), nitrogen (N), Carbon 

Dioxide (CO2) and hydrogen sulfide (H2S) hydrates. The 

consequences of this research are highly optimistic for the 
natural gas production industry. 

Keywords-intelligent optimization techniques; hydrate 
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I. INTRODUCTION  

A primary challenge for the deepwater hydrocarbon 
transmission pipeline is the formation of gas hydrate. 
Thermodynamic properties play an important role in this 
forming. The natural gas hydrate formation is clogging the 
deepwater hydrocarbon pipeline on normal thermodynamic 
conditions [1-3]. A model was developed in [4] to predict the 
three phases of vapor, liquid and hydrate temperatures from 34 
to 60F, pressure from 65 to 1500psi, and gas gravity 0.552 to 
0.9 [4]. An intelligent computational method was used to find 
the best correlation function for hydrate formation temperature 
in [5, 6] which can be applied to estimate the temperature of 
gas hydrate formation. An improvement to that model is to 
predict the temperature and pressure conditions at where 
hydrate can form in the pipeline. Under this scenario, this 
research paper suggests intelligent optimization algorithms 
(GA, PSO and GWO) to be applied with the ordinary 
differential equation (ODE) model for searching the unknown 
parameters for the proposed prediction model of hydrate 
formation pressure. The research objective of this paper is to 
develop a hydrate formation prediction model for pressure in 
deepwater pipelines. To achieve this objective, the suggested 
framework will be incorporated into the development of a 
correlation model at various gravities and thermodynamic 
conditions of hydrate formation. The hydrocarbon transmission 
pipeline is symbolized in a very complex process [7-10], hence 
making several assumptions of the problem is essential to 
delimit according to the scope of the study. The study is based 
on the natural gas hydrate formation in transmission pipeline 

systems. This refers completely to a network with large 
diameter pipelines that operate at high pressures. The natural 
gas transportation process is defined by inherent transient 
processes, because the problem is assumed as being in steady 
state. A mathematical model is required to determine the 
pipeline flow operation for a relatively large amount of flow, 
since the assumption of the system is to be in steady-state and 
the flow variables are independent of time. This is describing 
the flow behavior of natural gas in transmission lines. The 
governing equations will be described when gas flow, velocity, 
density, pressure, and temperature are considered as functions 
of time [11]. The pipeline transportation of natural gas is 
characterized by a complex process, hence, making demarcate 
assumptions of the problem is essential to the scope of the 
study. The modeling of the pipeline resistance is done in such a 
way that the variability of temperature and pressure is 
considered for the hydrate formation prediction model. 

II. RESULTS AND DISCUSSION 

Intelligent optimization methods provide predictions of 
hydrate formation in deepwater pipelines. The unknown 
variables of the developed correlation model were optimized 
by an optimization algorithm. The unknown variables were 
used to enable the correlation-based approach for binary 
composition of pure water and natural gas hydrate formation 
thermodynamic conditions. The data will be modeled as a 
function of the ordinary differential equation (ODE) (1) by 
applying the optimization algorithm to figure out the relation of 
thermodynamic properties for hydrate formation pressure. The 
optimization concept in the development of a hydrate 
formation prediction model can be expressed as an entity of 
three main parts: input, process, and output, which were 
analyzed quantitatively and qualitatively. The optimization 
method as a mathematical programming formally encompasses 
several stages [10, 12-15]. This perception is suggesting the 
idea that the exponential function would be the best function of 
a prediction model of hydrate formation. The first approach of 
model equation is a fractional exponent function [1], the model 
in [4] was an exponential function, and the model in [16] was a 
polynomial based equation. According to the above 
observation, the novelty of this model is that the proposed 
model in (1) is based on an ordinary differential equation 
(ODE) which is used in the prediction of hydrate formation 
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pressure as a thermodynamic property through an intelligent 
optimization algorithm: 

( ) bTa
f P e c

b
= +  (1) 

where a, b and c are constant coefficient as shown in Table I, T 
is the flowing temperature, and P is the pressure. 

TABLE I. CONSTANT COEFFICIENTS 

Coefficients a b c 

CH4 

PSO 0.413 0.096 -3.50 

GA 0.387 0.097 -2.16 

GWO 0.366 0.099 -1 

C2H6 

PSO 0.0511 0.152 0.161 

GA 0.044 0.16 0.271 

GWO 0.0514 0.152 0.162 

C3H8 

PSO 0.041 0.181 -0.062 

GA 0.034 0.233 0.0241 

GWO 0.040 0.181 -0.062 

iC4 

PSO 0.0176 0.206 0.031 

GA 0.017 0.197 0.025 

GWO 0.017 0.206 0.031 

CO2 

PSO 0.123 0.169 0.528 

GA 0.122 0.169 0.5311 

GWO 0.123 0.169 0.528 

N 

PSO 1.9605 0.082767 -8.438 

GA 1.7372 0.088284 -1.99 

GWO 1.74 0.08821 -2 

H2S 

PSO 0.0119 0.101 -0.044 

GA 0.015 0.0887 -0.152 

GWO 0.0118 0.101 -0.043 

 
The challenge of using the ODE function is to develop a 

prediction model with constant coefficients as shown in Table 
I. The correctness or correlation and analysis of prediction 
model results were examined by the mean square error 
equation: 

( )
2

exp

1

1 n

pre

i

MSE x x
n =

= −∑  (2) 

where, n is total number of data points or numbers of points on 
i, xexp is the existing value, and xpre is the predicted value. 

MSE is applied among the result of model and existing data 
sets with respect to i iterations [17-22]. The precise 
computational approach of methanol loss to the vapour phase 
within hydrate inhibition and right injection rate are calculated 
in (2) [23]. The neuro-fuzzy method is using (2) to find the 
growth rate of error [24] and in the Statistical Package for the 
Social Sciences (SPSS) static model of hydrate formation 
correlation (2) is also applied to determine its error [25]. The 
optimum number of hidden neurones is calculated by engaging 
MSE and regression R-value as an evaluation of ANN-MLP 
[26]. The relations between temperature, pressure and inhibitor 
were studied through the experimental data of [27]. These data 
present significant effects of temperature and pressure on 
hydrate-formation. The experimental data used give some 
interesting observations. At a certain temperature, 
hydrocarbons flow in the pipeline without inhibitors and no 
hydrate formation, but in the same conditions with lighter 

specific gravity of gas, hydrate is mostly formed at higher 
pressures. However, this condition is not always followed by 
the hydrocarbons. The propane and isobutene mixture of gasses 
will reduce the hydrate formation pressure notably and nitrogen 
is acting as an inhibitor. These generate an intelligent 
optimized result for hydrate formation conditions which are 
shown in Table II. Hydrate formation prediction conditions for 
the composition of methane (CH4), ethane (C2H6), propane 
(C3H8), isobutane, nitrogen (N), carbon dioxide (CO2) and 
hydrogen sulfide (H2S), gases in the deepwater pipeline were 
predicted on the data of [27] and are given in Figures 1-7. The 
results show that the developed model provides the best 
prediction results with minimum error as shown in Table II. It 
is specified that PSO and GWO give the best prediction results 
with fewer error points. The overall results of the developed 
model are validated through the [1, 4, 16] model equations and 
their comparison is given in Table II. 

This intelligent optimization correlation model is developed 
on the base of the ODE with 3 constant coefficients which are 
illustrated in Table I. The best minimum error difference was 
2.3 in CH4 (Figure 1). C2H6 gives 0.054187 with PSO and 
GWO (Figure 2), C3H8 gives 0.0161 in PSO as shown in Figure 
3, isobutene gives 0.010441 with PSO and GWO as shown in 
Figure 4, CO2 gives 0.093909 with PSO and GWO as shown in 
Figure 5, N has 2.2619 in PSO as shown in Figure 6, and H2S 
gives 0.09617 in PSO as shown in Figure 7. The developed 
model results are addressing the thermodynamic properties of 
hydrate formation for water and natural gas. 

TABLE II. ERROR COMPARISON  

Gas Algorithm 

Error 

Proposed [1] [4] 

[16] 

Less than 

23mol 

wt% 

More than 

23mol 

wt% 

CH4 

PSO 2.39 

7.74 18.93 12.227 12.259 GA 2.55 

GWO 2.75 

C2H6 

PSO 0.054 

3.42 8.943 15.007 15.040 GA 0.05 

GWO 0.054 

C3H8 

PSO 0.016 

4.22 3.443 15.131 15.160 GA 0.016 

GWO 0.022 

iC4 

PSO 0.010 

4.83 1.074 15.155 15.185 GA 0.0104 

GWO 0.0104 

CO2 

PSO 0.093 

7.97 5.849 14.933 14.961 GA 0.093 

GWO 0.093 

N 

PSO 2.26 

19.8 13.21 9.515 9.542 GA 2.917 

GWO 2.915 

H2S 

PSO 0.096 

13.345 23.36 15.049 15.077 GA 0.1013 

GWO 0.096 
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Fig. 1.  Methane gas hydrate formation prediction on ODE model 

 

 
Fig. 2.  Ethane gas hydrate formation prediction on ODE model 

 

 
Fig. 3.  Propane gas hydrate formation prediction on ODE model 

 
Fig. 4.  Iso-butane gas hydrate formation prediction on ODE model 

 

 
Fig. 5.  Carbon dioxide gas hydrate formation prediction on ODE model 

 

 
Fig. 6.  Nitrogen gas hydrate formation prediction on ODE model 
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Fig. 7.  Hydrogen sulfide gas hydrate formation prediction on ODE model 

III. CONCLUSSION  

The developed model for the prediction of hydrate 
formation thermodynamic conditions was obtained by ordinary 
differential equation and optimization algorithms. Results are 
presenting that GA, PSO and GWO algorithms are effectively 
discovering the value of constant coefficients. PSO and GWO 
algorithms are giving overall minimum error. However, there 
are some limitations in this prediction model which require 
further research, to enhance its accuracy and functionality. The 
accuracy of the proposed model can be enhanced by optimizing 
the phase behavior chart by having more accurate information 
of natural gas components, water composition and optimize 
operating conditions of natural gas hydrates formation during 
production, transportation and processing of natural gas 
hydrates. 
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