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Abstract— The use of polymeric materials in engineering 

applications is growing more and more all over the world. This 

issue requests new methodologies of analysis in order to assess 

the material’s capability to withstand complex loads. The use of 

polyacetal in engineering applications has increased rapidly in 

the last decade. In order to evaluate the behavior, the damage 

and coalescence of this type of polymer, a numerical method 

based on damage which occurs following several stages 

(nucleation of cavities, their growth and coalescence in more 

advanced stages of deformation) is proposed in this work. A 

particular attention is given on the stress-strain and the 

volumetric strain evolution under different triaxiality and for 

three initial void shapes. Its application to polyacetal allows 

approving this approach for technical polymers. Finally, this 

method allow us to compare the obtained results of basic 

calculations at different triaxiality and to discuss their possible 

influence on the initial size and the geometrical shape of the 

porosity on the material failure. 

Keywords- void growth; Coalescence; representative elementary 

volume( RVE); ductile; Polyoxymethylene (POM); acetal 

I. INTRODUCTION 

In the plastics industry, technical polymers are widely used 
in engineering components which may experience complex 
mechanical loadings. The understanding of their intrinsic 
mechanical behavior to evaluate the mechanisms of damage 
and coalescence, is of prime importance in order to make better 
choices in the design of all components. Over recent years, 
considerable attention has been focused on the analysis of 
plastic deformation of the ductile materials and solid polymers. 
The deformation processes involved in the plastic deformation 
of the ductile materials have been widely investigated by 
several authors [1-19], however, most studies conducted on 
solid polymers are based on the same criteria. 
Phenomenological laws have been proposed by some 
researchers [20-25] and other studies have been based only on 
the mechanical behavior of polymers in large scale deformation 
[26-36]. Research efforts have been devoted to understanding 
the mechanisms of voids growth and coalescence and to 
developing micro-mechanical models for better describing the 
ductile fracture of polymers. Probably the best-known 

expansion plasticity model is the one introduced by Gurson 
[20], later modified by Tvergaard and Needleman [37-39]. 

The Gurson model was derived based on the assumption 
that the deformation mode of the matrix material surrounding a 
void is homogenous. It can therefore predict the material 
softening behavior due to the nucleation and growth of voids, 
but has no intrinsic ability to predict the shift of a homogenous 
deformation mode to a localized mode by void coalescence. 

For our work, the representative elementary volume (RVE) 
method has been chosen, where the stress depends on the 
deformation, the strain rate and the stress triaxiality effect. This 
law has been used successful to characterize the behavior of a 
great number of polymers with an empirical criterion, like the 
critical void volume fraction.  

In this study, a numerical simulation on the basis of the 
model of an elementary cell is presented. Firstly, the unit cell 
model which is used to predict the response of a material 
consisting of a periodic assembly of RVE is briefly described. 
Secondly, a method developed for the calculation of cells while 
maintaining a constant triaxiality during the loading is 
described. This method allows us to compare results of basic 
calculations for all triaxiality used in this study and to 
summarize the effects of the various geometrical parameters on 
the void coalescence in the acetal material (Polyoxymethylene 
or POM). Finally, the relevant features which should be taken 
into account in the application of an accurate constitutive RVE 
model are discussed with a particular attention paid on 
volumetric strain, damage and their evolutions for all 
triaxiality. 

II. MATERIAL AND NUMERICAL PROCEDURE 

The void matrix material is characterized by a model type 
of material (POM). The yield stress of the virgin matrix 
material σ0 is set to be 55 MPa. The elastic properties of the 
model material are taken as E=2900 MPa and ν=0.4. The 
results obtained using the standard tensile tests are presented in 
Figure 1. The objective of these tests is to demonstrate the 
strain-rate effect on the response and fracture under large 
deformation of the POM material. Tests were conducted on an 
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INSTRON machine. An optical measurement system was used 
to control the strain-rate and measure the local strain in the 
specimen section. The mechanical tests were achieved at thre 
strain rates of 10

-1
, 10

-2 
and 10

-3
 at room temperature (23 °C).  

The POM material exhibits an influence of strain rate on 
the nonlinear behavior. In order to observe this effect, and to 
quantify it, an overview of the strain-rate effect on the true 
stress-strain curves is firstly analyzed. 

Figure 1 indicates that the response of this material is 
similar to other polymers seen in the literature on the 
viscoelastic evolution. However, the overall response looks like 
ductile materials. In this response, the curve shows a 
proportional limit followed by a maximum at which necking 
takes place. It is common to term this maximum as the yield 
stress in polymer materials. 

 

 
Fig. 1.  Experimental true stress – strain curves during POM at 23°C (10-1 

s-1; 10-2 s-2 and 10-3 s-3). 

After experimental testing, results show that the behavior of 
the POM has the same evolution with ductile materials. So, for 
a first approach, a law already used for metals is applied. The 
objective is to verify the relevance of this law to this type of 
polymer. In the present work, the rate-independent power law 
strain hardening material is applied. The flow stress of the 
virgin matrix material is described as: 
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Where σf  is the flow stress, εp the equivalent plastic strain, 
σ0  the yield stress, ε0= σ0 /E the yield strain, and n the plastic 
strain hardening exponent. Three moderate hardening 
exponents n have been used to verify a good relationship and 
representation with the experimental curve (n = 0.01, 0.05 and 
0.08). 

In the idea of good representation, two pre-strain cases have 
been considered (1.5% and 2.5%). The pre-strain here means 
the permanent strain after unloading. Pre-strain induces strain 
hardening and residual stress in the void model as well as void 
growth and void shape changes. In order to separate the strain 
hardening effect from the one due to void shape changes, 
ellipsoidal, and spherical voids with a void volume faction 
equivalent to the one at the end of pre-strain history and a 
homogenous pre-strained matrix material have been analyzed.  

Figure 2 compares the virgin material with the three 
moderate hardening exponents in (a) and the two homogenous 
pre-strained matrix materials in (b). It should be noted that in 
this study, n=0.05 and 1.5% of pre-strain have been chosen. 
The stress-strain curve of the material shown in Figure 2 is 
obtained by trimming the virgin material curve by the specified 
pre-strain level. The elastic properties of the pre-strained 
materials are kept identical to the virgin material. 
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Fig. 2.  Matrix material properties used in the analyses: a) The plastic strain hardening exponent (n); b) The pre-strain variability for the virgin material 
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Figure 3 shows the quarter unit cell model used in the 
study. The model has been used previously for various studies 
on the void coalescence behavior [40-46]. The model is 
axisymmetric and the stress ratios ρ=Σx/Σy  are kept constant in 
both the pre-straining analysis and subsequent analyses. The 
model was analysed in a load-controlled manner and 
ABAQUS-RIKS method has been applied [47]. Nodal 
constraints were applied such that the left and top boundaries 
remain vertical and horizontal during the analysis. 

 

 
(a)                          (b) 

Fig.3. A voided unit cell model and the region analyzed numerically: a) a 

voided unit cell model and; b) one quarter of the unit cell model. 

For the axisymmetric problem considered the stress 
triaxiality can be calculated from the stress ratio α: 
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where σh is the hydrostatic stress and σeq the von Mises 
equivalent stress. 

The initial radius and height of the model are denoted as 
Lx0, Ly0, Ry0 and Rz0 and represent the initial radii of the void. 
The results are based mainly on the case with an initial void 
volume fraction of 1%. Voids with different initial shapes 
(spherical, prolate, and oblate) but same initial void volume 
fraction are also considered (Figure 4). The initial and current 
void aspect ratios are defined as: 
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Fig. 4.  Three initial void shapes considered in the study: a) spherical void with S = 1; b) prolate void with S = 4;  c) oblate void with S = 0.25. 

The microscopic strain and Cauchy stress tensors inside the 
matrix are denoted by small letters ε and σ, whereas the 
macroscopic strain and stress tensors are denoted by the capital 
letters Ε and Σ. The overall deformation of the cell model can 
be calculated from the normal displacements of the outer faces. 
Because of the symmetry of the problem on hand, the 
macroscopic total logarithmic strain tensor Ε and Cauchy 
stresses tensor Σ possess the same principal directions, which 
are the radial and axial directions. The tensor Ε is qualitatively 
given by: 

( ) (4)y y x x z zp zE E e e e e e e= ⊗ + ⊗ +Ε ⊗  

The Macroscopic asymmetric radial (E1) and axial (E2) 
deformations are defined by the following expressions: 
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For the purpose of specifying the overall plastic 
deformation of the cell model, we choose the effective strain Ee 
defined by: 

                    
2 1

(6)
2
3eE E E= −                               

as an independent variable for presenting most results. The 
macroscopic stress tensor Σ is qualitatively given by:  

( ) (7)y y x x z zp ze e e e e eΣ=Σ ⊗ + ⊗ +Σ ⊗
 

With the remote true principal stresses Σy in both y and x 
directions, and Σz in z-one. They are calculated at any instant as 
the average reaction forces at the cell faces per momentary 
areas through. 
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where T is the stress vector. The corresponding effective von 
Mises stress Σe and hydrostatic stress Σh result from: 
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and the overall stress triaxiality β of the stress state is defined 
as the ratio: 
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The stress triaxiality equals 1/3 (or α=0) for simple uniaxial 
tension and 0 (or α=-0.5) for pure shear. Figure 5 shows the 
evolution of stress ratio α versus the triaxiality β used in the 
study.  
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Fig.5. Evolution of stress ratio versus the triaxiality. 

III. METHOD OF ANALYSIS 

In as much as the unit cell is subjected to axisymmetric 
deformation, the analysis of its evolution is performed using a 
cylindrical coordinate system with an orthonormal frame 
denoted by (ex, ey, ez) along y-radial, x-ortho-radial and z-axial 
axis. In the initial undeformed configuration, the unit cell is a 
cylinder with diameter 2LY0 and height 2LZ0. The voids are 
assumed to be spheroidal initially with radius RY0 and half 
length RZ0. The void is oblate if RY0 > RZ0, and prolate if RY0 < 
RZ0. 

The particular case of a spherical void with radius Ry0 
corresponds to the situation for which RY0 = RZ0. The void 
volume fraction f  is defined as the ratio of the total void 
volume to the unit cell volume. The void volume fraction can 
be calculated in two ways: the first is by numerical integration 

of the points along the surface of the void volume; a second 
criterion is by using the approximate formula proposed by 
Koplik and Needleman [41]. This relationship has been 
proposed assuming the matrix plastically incompressible. 

The initial cell geometry is completely characterized by the 
void volume fraction, the void aspect ratio and the cell aspect 
ratio which their initial values, f0, S0 and λ0 are respectively 
defined by: 
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As a consequence of the lattice periodicity, all outer planes 
of the unit cell have to behave only as rigid moveable planes in 
coordinating directions during the process of loading. The faces 
at y = Lyo and z = Lzo will have a uniform normal displacements 
and their mutual orientations will be maintained. These 
requirements impose the unit cell to remain a cylinder during 
the finite strain deformation process. This feature is attained by 
assessing the deformation via an imposed homogeneous 
elongation (uz

A
) of the corner A in the axial direction and 

monitoring its homogeneous radial displacement (uy
A
) by 

multipoint constraints. The cylinder is thus characterized in an 
arbitrary state by: 
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Because of these constraints, only one quarter geometry of 
the unit cell model (0≤ y ≤ Lyo; 0≤ z ≤ Lzo) needs to be analyzed 
and is drawn in Figure 3-b. To satisfy the axisymmetric 
conditions and to ensure periodicity of the cell arrangements, 
the boundary conditions of the quadrant dealing with 
displacements read, uy = 0 along the axis, uz = 0 on the bottom 
and uy = uy

A
  on the lateral surface, uz = uz

A
 on the top. 

The actual void volume fraction f is calculated whether 
using numerical integration from the updated coordinates of the 
nodes at the void–matrix interface during the deformation of 
the unit cell, or using the following approximate analytic 
formula proposed in (8). 
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where the ratio of the current volume V of the unit cell to its 
initial volume V0 is given by: 
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∆V
e 

is an approximate correction term for the elastic 
expansion change in cell volume due to the imposed 
hydrostatic stress Σh. It was checked that the two methods yield 
very close results within the range of our calculations. It should 
be mentioned however, that (16) does not hold in the case of 
porous matrix. On the other hand, it should be kept in mind that 
this approximation will be used in the transient analysis of the 
cell model to provide the starting loading for which, as will be 
seen later, it turns out that the stress triaxiality drops down 
quickly and then have to be corrected.  

IV. NUMERICAL RESULTS AND DISCUSSION 

In order to evaluate the proposed transient analysis for 
axisymmetric cell model simulations, a series of calculations 
have been conducted. Figure 6 shows the mesoscopic radial 
strain versus equivalent strain curves for the case with an initial 
void volume fraction of 1% and for all triaxiality proposed in 
this study from 0.33 to 3.  

A global view of these results indicates that there is rather a 
reasonably good agreement between the results. However, it is 
seen from these curves that a difference exists in the nature of 
the response especially in the coalescence. In general, the cell 
model elongates in the vertical direction and contracts in the 
radial direction. During the plastic deformation and void 
growth, an approximate linear relation can be observed. This 
linear relation indicates a homogenous deformed state. When 
the deformation reaches a critical state a sudden shift from the 
relatively homogenous deformation state to a uniaxial straining 
state can be seen. This shift depicts the onset of void 
coalescence. Computations were carried out for all cell models, 
whereby the extreme values of stress triaxialty from 0.33 to 3 
were investigated. The most interesting outcome of the cell 
models is the overall mesoscopic hardening and failure 
behavior. This relation is expressed in term of the invariants of 
the equivalent stress versus equivalent strain.  

Figure 7(a) displays variations of the equivalent stress as a 
function of the equivalent strain. The onset of void coalescence 

corresponds to a marked change of the slope of the curves. The 
transition is most sharp at low stress triaxiality, where the 
triaxiality effect is marked. It has all also been shown that after 
the onset of void coalescence the falling equivalent stress–
strain curves is nearly linear, except for the high triaxiality (2 
and 3). 

Figure 7(b) exhibits the variations of the volumetric strain 
as a function of the equivalent strain. Void coalescence induces 
an increase in the void growth rate and a transition in the void 
shape evolution. After the onset of void coalescence, the 
volumetric strain growth is significantly larger. The end of the 
coalescence process in a polymer material usually consists of 
the failure of the remaining ligament by microcleavage, 
crystallographic shearing, or with the help of the second 
population of smaller voids, rather than volumetric void growth 
until impingement. 
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Fig. 6.  Radial strain versus equivalent strain for different stress triaxiality. 
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Fig.7. Cell model results for spherical void in different stress triaxiality: a) Equivalent stress versus equivalent strain; b) Volumetric strain versus equivalent strain 
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In the previous results we note a reduction of the void 
diameter which depends on the triaxiality occurred in the 
course of loading. To study the influence of this additional 
condition on the mechanical behavior of the cell, we have 
chosen three cases of void volume fraction (1%, 5% and 10%) 
with different initial shapes (spherical, prolate, and oblate) 
(Figure 4). Computations were carried out for all cell models, 
whereby the extreme values of stress triaxialty from 0.33 to 3 is 
investigated. 

Figure 8 shows the evolution of the mesoscopic equivalent 
stress versus equivalent strain curves and summarizes the 
effects of the various geometrical parameters on void 
coalescence; the three cases of void volume fraction (1%, 5% 
and 10%) with different initial shapes (spherical, prolate, and 
oblate) for all triaxiality. Here the equivalent stress and strain 
are chosen, because both are relevant coalescence parameters. 
All the cells were loaded with a prescribed triaxiality β=0.33 to 
3.  

Several comments can be made concerning the void 
coalescence. The onset of void coalescence depends strongly 
on the relative void spacing as can be discerned by comparing 
cells (1% spherical with β=0.33) and (1% spherical with β=3), 
which have an identical void shapes and initial porosity. The 
effect can be seen in another way by comparing cells (5% or 
10% prolate) and (5% or 10% oblate) for all triaxiality, which 
has been chosen with roughly similar void spacing. The cells 
have not a similar coalescence strain for the same initial void 
volume fractions and different shapes. The conclusion to be 
drawn is that heterogeneity in the void distribution inherited 
from prior working or processing plays a major role in the 
coalescence of the material.  

  Void spacing is not the only influential parameter as can be 
seen when comparing figure 9-a and figure 9-e (spherical; 5% 
and 10% prolate or oblate). In these comparisons, a higher level 
of triaxiality builds up in the ligament of cell and accelerating 
localization of the coalescence. 

   For a similar cell aspect ratio, cells (10% prolate) and 
(10% oblate) also have significant differences between the 
slopes after the onset of void coalescence, due to the differing 
initial porosity and void shape. 

The analysis of the stress and strain fields inside several 
void cells has shown that voids start interacting with each other 
well before the onset of void coalescence. Figure 9 compares 
the critical stress and strain obtained at the moment of the 
coalescence as a function of the triaxiality for the different 
geometrical parameters on void coalescence in all cases. In 
general, stress triaxiality has a negative effect on the 
coalescence stress and strain. It is interesting to observe that 
both the void shapes have a strong influence on the reduction 
of the coalescence stress and strain. 

V. CONCLUSION 

In order to summarize the observed results in this paper, 
and to confirm predictions of the RVE model, we have noted 
some conclusions. 

When the peak equivalent stress - strain appears at the outer 
boundary; the void coalescence starts. The microscopic 
coalescence criterion is practical and has been applied to 
determine the coalescence. However, this observation further 
verifies the plastic limit load theory for void coalescence, and 
the void coalescence occurs when a plastic limit load state of 
the void cell model has been reached. 

The void coalescence behavior effect is strongly dependent 
on the stress triaxiality and the initial void shape. For prolate 
and oblate voids smaller than 5%, the critical stress and the 
strain coalescence effect can be neglected. At high stress 
triaxiality cases the reduction in coalescence stress – strain due 
to the initial voids higher than 5% can be very significant. For 
an initially spherical void with β = 3, the reduction in 
coalescence strain can be as large as 70%. In comparison, the 
stress triaxiality effect of the coalescence strain of oblate voids 
is the largest. The absolute reduction of coalescence strain 
seems to be dependent of stress triaxiality. 

Finally, it can be noted that the predictions show promising 
results, and these calculations show that the constitutive 
equations for damage evolution are required, and the 
determination of onset and continuation of a triaxiality is based 
on the initial porosity shape. 
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Fig. 8.  Cell model results for three initial void shapes (spherical; prolate and oblate): (a) β =0.33; (b) β =0.6; (c) β =1; (d) β =2; (e) β =3. 
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Fig. 9.  Cell model results: a) critical stress versus triaxiality; b) critical strain versus triaxiality. 
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