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Abstract-In this work, an unsteady flow for drainage through a 
circular tank of an isothermal and incompressible Newtonian 

magnetohydrodynamic (MHD) fluid has been investigated. The 

series solution method is employed, and an analytical solution is 

obtained. Expressions for velocity field, average velocity, flow 

rate, depth of fluid at different times in the tank and time 

required for the wide-ranging drainage of the fluid (time of 
efflux) have been obtained. The Newtonian solution is attained by 

assuming σΒ0
2=0. The effects of various developing parameters 

on velocity field υυυυzzzz and depth of fluid H(t) are presented 

graphically. The time needed to drain the entire fluid and its 

depth are related and such relations are obtained in close form. 

The effect of electromagnetic forces is analyzed. The fluid in the 

tank will drain gradually and it will take supplementary time for 
complete drainage.  

Keywords-tank drainage; Newtonian MHD fluid; analytical 

solution; series solution 

I. INTRODUCTION  

Tank seepage by gravity is an old, but still open issue. The 
tank might be exhausted through an opening (gap situation) or 
may be depleted through a connected pipe. The pipe may be 
flat or vertical or may include a full directing system with 
vertical drop and even enlargement with valve and fittings, etc. 
The tank has frequently a barrel shaped structure with a vertical 
divider. Anyway the base level may be cone molded, 
hemispherical or of another shape. Gravity depleting of liquid 
frameworks is utilized quite often in businesses, e.g. in 
condensate depleting, water division, recovery of synthetic 
concoctions from a homestead tank, etc. The outfitted model 
will precisely show the tank depleting conduct for all tanks 
with a similar arrangement. End impacts, exactness of time 
estimation, precision of stature estimations and grating 
misfortunes will be examined [1]. Many real life applications 
are modeled by the tank drainage flow. Considering the 
inevitable applications, this problem has attracted research of 

not only mathematical but also engineering background. 
Authors in [2] have used the Newtonian fluid principle for tank 
drainage flow and power law fluid has been considered in [3] 
in an attempt to solve the problem analytically. Theoretical 
results of time drainage have been derived in [3, 4]. Further, in 
[5], the study has been extended while considering different 
geometries for outflow. In [3, 6] the discharge velocity and 
flow rate of the fluid outflowing through a hole are discussed 
using Torricelli’s equation. The relationship between the efflux 
time needed to drain and the depth of the turbulent fluid has 
been derived in [7, 8]. The unsteady tank drainage flows are 
discussed in [9, 10] in two and three dimensional tanks 
respectively. Efflux time and the cylindrical flow are presented 
in [11]. The gravitational force has been considered in [12], 
acting on a fluid in a spherical tank. In some similar work 
regarding gravity driven flow [13], the polymer solutions have 
been considered for drag reduction. 

An exact solution of Navier Stokes equation modeling the 
tank drainage flow problem for an electrically conducting 
Newtonian fluid has been derived in [14]. The exact solution 
for a tank with a Newtonian fluid with slip condition has been 
solved in [16]. In [17], an analytical solution approach of the 
tank drainage problem for an electrically conducting power law 
fluid is presented. In [18-20], the Ellis fluid has been studied 
regarding the tank drainage problem with the special cases of 
Newtonian, power law and Bingham plastic fluid. 

II. BASIC EQUATIONS 

The governing equations for the incompressible thick liquid 
stream, dismissing warm impacts are:  

� ⋅ � = 0    (1) 

�
	�

	

= −�� + �� + � ⋅ � + (� × �)    (2) 
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where � represents the velocity vector, ρ represents density, � 
is the dynamic pressure, � the body force and � the extra stress 

tensor. The material derivative is denoted by 
D

Dt
 and the 

electric current density is denoted by � . Also � = �∘ + � 
(where � , 

�∘ and �  are the total magnetic field, the forced 

magnetic field, and the induced magnetic field respectively). 
The modified Ohm’s law and Maxwell’s equation [21-24] are:  

� = ��� + � × ��    (3) 

��� � = 0,  � � � � !" �,  #$%&� � � '(
'
     (4) 

where E, µm 
and σ are the electric field, the magnetic 

permeability, and the electrical conductivity respectively. The 
magnetic flux � is derived by the magnetic induction equation 
which describes the motion of an electrically conducting fluid 
under the influence of a magnetic field. The magnetic field � is 
assumed to be perpendicular to the velocity field 	� . The 
magnetic Reynolds number is very small, which means that the 
induced magnetic field � is negligible in comparison with �∘. 
Meanwhile no outdoor electric field is considered, the outcome 
of polarization of the ionized fluid is insignificant, and the fluid 
flow area is supposed to be free of electric field. Under these 
expectations [25], the MHD force in (2) can be placed into:  

� � � � ���∘*�    (5) 
The extra stress tensor, essential in a Newtonain fluid is 

specified by: 

� � !+,    (6) 
where +, is the first Rivlin-Ericksen tensor defined as: +, � �� 
 ����-    (7) 
For the Rivilin-Ericksen tensor, in cylindrical co-ordinates, 

we have: 
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    (8) 

III. TANK DRAINAGE 

Consider a cylinder-shaped tank containing an 
incompressible Newtonian MHD fluid. The radius of the tank 
is >-  and its diameter is ?. The initial depth of the fluid is @A. 
The fluid in the tank is drained down through a pipe of radius > 
and length B. Let @�C� be the depth of fluid in the tank at any 
time C. We plan to compute flow rate, velocity profile, shear 
stress, pressure profile, average velocity on the pipe, 
connection of how does the time vary with length, and the time 
required for the whole drainage. We use cylindrical coordinates �%, D, E� with E-axis end to end the midpoint of the pipe in 
vertical direction and % -axis normal to it. Then the flow is only 
in the E-direction, and the % and D components of velocity field 
are zero: 

� � ��4 , �6, �8� � �0,0, �8�%, C��    (9) 

By (9), the equation of continuity (1) is identically fulfilled 
and the momentum equation (2) after using (3), reduces 
toward: 

r-component of momentum: 

'F
'4 � 0    (10) 

θ-component of momentum: 

,
4

'F
'6 � 0    (11) 

z-component of momentum: 

� 'GH'
 � � 'F
'8 
 I

4
'

'4 J% 'GH'4 K 
 �L � ��*A�8�%�    (12) 
 

 
Fig. 1.  Geometry of the tank drainage flow through the pipe 

From (10)-(12) we can see that the equation of motion is 
simple, yielding that the pressure is only a function of z and t 
and the equation to be solved for vz(r,t) is: 

� 'GH'
 � � 'F
'8 
 I

4
'

'4 J% 'GH'4 K 
 �L � ��*A�8�%�    (13) 
Equation (13) is a partial differential equation for p and �8. 

The velocity in the pipe flow remains almost constant in time 
due to the slow draining since we may neglect the time 

derivative 
'9H'
 . The flow in the pipe of radius R is caused by 

both gravity and hydrostatic pressure. The pressures at the pipe 
entry and exit are one-to-one: at z=0, � � �, � �L@�C ), at 
z=L, M � M* � 0, so that: 

'F
'8 � � NOP�
�

Q     (14) 

The domain of the problem is bounded by the following 
equation (boundary conditions): 

,
4 	 '

'4 	J%	 '9H'4 K � R(ST
I 	�U�%� � � NO

I 	 5P�
�
Q 
 17    (15) 

at	% � 0, '9H'4 � 0    (16) 
at	% � >, �U � 0	    (17) 

Equation (15) can be written as: 

'T9Y'4T 
 ,
4 	 '9H'4 � 	 R(TSI 	�U�%� � � NO

I 	 5P�
�
Q 
 17    (18) 

with: 

�8 � 	 NO
R(TS 5P�
�

Q 
 17 � Z�%�    (19) 
By using (19) in (16)-(18), we obtain:  

'T[�4�
'4T 
 ,

4
'[�4�

'4 � R(TSI Z�%� � 0    (20) 
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With related boundary conditions: 

at	% � 0, '[ �4�
'4 � 0    (21) 

at	% � >, Z�%� � NO
R(TS 5P�
�

Q 
 17	    (22) 
The general solution of (20) after using the Bessel function 

is: 

Z�%� � \,	�A 	]%�A^_R
I ` 
 \*aA ]�%�A ^_R

I `    (23) 
where \,  and \*  are arbitrary constants and �A  and aA  are the 
Bessel functions of first and second kind of order zero. For a 
particular solution using (21)-(22) in (23), we get: 

Z�%� � NO�P�
�bQ�cSd4(S^efg h
QRcSdi(S^efg h(TS

    (24) 

Substituting (24) in (19) we get:  

�8 � NO�P�
�bQ�
RcSdi(S^efg h(TS

j�A d>�A^_R
I h � �A d%�A^_R

I hk    (25) 
A. Finding Flow Rate (l) 

According to (26) we can find the flow rate: 

l � m 2πr	vr�r, t�drtA     (26) 

By using the velocity profile from (25) in (26), we get: 

l � NOuiv�P�
�bQ�Awxyd;{;|Tf}TSvg h
~IQ�Sdi(S^fgh     (27) 

where �A is the modified Bessel function of the 1st kind of order 
0 and here 0Fx, J; 3; iT�T

~ K presents the Hyper geometric 0�x, 
regularized function, which can be specified as: 

0�x, J; 3; iTR(TS~I K � 	 ∑ JiTR(TS~I K� ,
��{b���!���A     (28) 

B. Finding Average Velocity  

We find the average velocity ��  by: 
�� � l

uiT    (29) 
Putting (27) in (29) we get: 

�� � ��tT�����b��A��yd;{;�T��TSv� h
~���Sdt�S^��h     (30) 

C. Finding Mass Balance  

We find the mass balance by: 

�
�
 ��>* -@�C�� � �	l�t�    (31) 

The remaining mass in the tank (mass balance) can be 
computed by the following procedure: 

Putting (27) in (31), and then separating variables on both 
sides of equation one obtains by taking t=0, @�C� � @A: 

2 2
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    (32) 

The relation of tank depth with respect to time is: 

_~IQiT �	�Sdi(S^fgh
NOivA��yd;{;�T��TSv� h &� JP�
�bQ

PSbQ K � C    (33) 
The time of efflux is attained by taking H(t)=0 in (33): 

~IQiT �	�Sdi(S^fgh
NOivA��yd;{;�T��TSv� h &� JPSQ 
 1K � C    (34) 
Remark: By taking ��	*A � 0  in (34), the Newtonian 

arrangement without MHD is recovered, which remains 
complete through by Bernoulli's equation [26].  

 

 
Fig. 2.  Effect of � on velocity profile , when �=0.78g/cm3

, >=1cm, L=9.8m/s2, B=10cm, @(C)=20cm, �=0.1, �A=0.25 
 

 
Fig. 3.  Effect of H(t) on velocity profile , when �=0.6poise, �=0.78g/cm3, >=1cm, L=9.8m/s2, B=10cm, �=0.1, �A=0.25 

 

 

Fig. 4.  Effect of L on velocity profile, when �=0.6poise, �=0.78g/cm3, >=1cm, L=9.8m/s2, @(C)=20cm, �=0.1, �A=0.25 
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Fig. 5.  Effect of B0 on velocity profile, when �=0.6poise, �=0.78g/cm3, 
R=1cm, L=9.8m/s2, B=10cm, H(C�=20cm, �=0.1 

 
Fig. 6.  Effect of σ on velocity profile, when �=0.6poise, �=0.78g/cm3, >=1cm, L=9.8m/s2, B=10cm, H(t)=20cm, �A=1 

 

Fig. 7.  Effect of ρ on velocity profile, when R=1cm, �=0.6poise, L=9.8m/s2, B=10cm, H(C)=20cm, �=0.1, �A=0.25 

IV. RESULTS AND DISCUSSION 

In this article, the unsteady drainage problem through a 
circular pipe which is attached at the center of the circular tank 
by applying an incompressible, isothermal electrically 
conducting Newtonian fluid was addressed, through which 
analytical solutions of Bessel's differential equation were 
obtained, which are certainly more accurate than the solutions 
obtained with existing methods like ADM and perturbation 
methods. The analytical solution was obtained in a compact 
form, which helps in visualizing the fluid velocity profile, flow 
rate, average velocity, and time required for complete drainage. 
This can be utilized in many applications, for example waste 
management, industrial flow problems, etc. The effect of 
velocity profile �U  and depth H(t) has been analyzed with 
regard to various parameters. On the velocity profile, the 
effects of different parameters were observed, i.e. the effect of 
the applied magnetic field	�A , electrical conductivity σ, pipe 
radius R, depth H(t), density ρ, dynamic viscosity �, length of 
pipe L and the difference of the radius of the circular tank RT on 

the depth of tank H(t) versus the radius of the pipe R and time t. 
It was observed that the magnitude of the velocity of the fluid 
decreases when the applied magnetic field B0, length of the 
pipe L, electrical conductivity σ, dynamic viscosity � increase 
(Figures 2-7) and increases when the depth H(t)and density ρ of 
the fluid increase Figures (8-9).  

 

 
Fig. 8.  Effect of RT on depth w.r.to R, when �=0.6 poise, �=1.38g/cm3, 
g=9.8m/s

2
, L=10cm, t=1, H0=20cm, �=0.1, �A=0.25 

 
Fig. 9.  Effect of RT on depth w.r.to t, when �=0.6poise, �=1.38g/cm3, 
g=9.8m/s

2
, L=10cm, R=1cm, H0=20cm, �=0.1, �A=0.25  

V. CONCLUSION 

The equation of isothermal, incompressible, unsteady tank 
drainage flow for an electrically conducting Newtonian fluid is 
studied to obtain closed form expressions of velocity field, 
average velocity, flow rate, fluid depth in the tank, and time 
required for complete drainage of the fluid (time of efflux) by 
using Bessel functions. A relationship between the fluid depth 
and time required to complete drainage in (32) was obtained. 
Fluid depth variation with time was demonstrated. It was also 
noted that the applied field and electrical conductivity are 
inversely proportional to the velocity field and that as the 
electromagnetic forces increase the fluid in the tank drains slow 
and clearly complete drainage takes more time. The presented 

results are validated by assuming ��A* � 0 in (34). The results 
of this work are compatible with those presented in [27], where 
the Bernoulli's equation was used.  
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