
Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5459-5465 5459

www.etasr.com Hassan & Yousif: Ions Motion Optimization for Cloud Job Scheduling

Cloud Job Scheduling with Ions Motion Optimization

Algorithm

Mohammed Elobied Hassan

Faculty of Mathematical Science
University of Khartoum

Khartoum, Sudan

elbashier.mohd@gmail.com

Adil Yousif

College of Sciences and Arts
Najran University

Sharourah, Saudi Arabia

ayalfaki@nu.edu.sa

Abstract—Cloud computing technology success comes from its

manner of delivering information technology services, how they

are designed, propagated, maintained and scaled. Job

Scheduling on cloud computing is a crucial research area and is

known to be an NP-complete problem. Scheduling refers to

assigning user requests to underlying resources effectively. This
paper proposes a new Job Scheduling mechanism for cloud

computing environment. The proposed mechanism is based on

the Ions Motion Optimization (IMO) algorithm. IMO has two

phases, liquid, and crystal. These two phases balance the

algorithm behavior between convergence and local optima

avoidance. To evaluate the proposed mechanism, a simulation

with different scenarios using the CloudSim simulator is

conducted. The performance of the proposed algorithm is

compared with two metaheuristic algorithms known as Cat

Swarm Optimization (CSO) and Glowworm Swarm

Optimization (GSO). Furthermore, the proposed

IMO mechanism is compared with First Come First Served and

random solution. The experimental results demonstrated that the
proposed mechanism outperformed both CSO and GSO and

produced the shortest execution time in all experimental
scenarios.

Keywords-optimization; ions motion; cloud; job scheduling

I. INTRODUCTION

Cloud computing is a new technology based on transferring
computation processes from local desktops to remote providers
on the internet. Cloud computing services are extensive and
provide on-demand access to a pool of computational resources
[1-3]. The consistency and stability of cloud services is based
on several features such as the scheduling process of jobs.
Scheduling is categorized into three levels, namely job level,
resource level, and workflow level. In job scheduling, users
submit jobs to cloud providers and job scheduling distributes
the jobs submitted by the cloud clients to the provider with
suitable resources [4-6]. Cloud job scheduling is a job and
resource management process based on several factors to
increase the overall cloud performance [7, 8]. Cloud jobs may
comprise key in data, processing, accessing software, or
storage maintaining process. Cloud providers classify jobs
based on the service-level agreement (SLA) and requested
services. Each user job is assigned to one of the available cloud
resources. Cloud providers execute the submitted jobs, and the

results are transmitted back to cloud users [9-12]. Job
scheduling in cloud computing is an NP complete problem due
to the huge amount of tasks submitted by cloud users to cloud
providers. The job scheduling process starts when cloud users
submit their jobs to cloud providers. The job scheduler in cloud
providers requests the resource information service in order to
obtain the status of available resources and their features. Then,
the job scheduler assigns the jobs to suitable resources based on
the job and resources information requirements. Cloud job
scheduler allocates several clients jobs to multiple cloud
resources. Job scheduling mechanism tries to allocate cloud
resources in an optimal way [3, 13-16]. Current job scheduling
methods that use a variety of optimization criteria suffer from
several issues. The cloud batch systems prefer turnaround time
and throughput as job scheduling criteria. However, interactive
cloud systems use response time and fairness [17-19]. Different
types of cloud job scheduling based on heuristic, metaheuristic
and optimization techniques have been proposed [20-22].
Heuristic cloud job scheduling presents an optimal solution
based on knowledge theories for obtaining optimal scheduling
solutions [23, 24]. Metaheuristic methods are general methods
used for job scheduling based on natural inspired optimization
methods such as particle swarm optimization and ant colony
optimization [25-27]. Optimization techniques provide good
solutions but still not the optimal solution. Therefore, there is a
need for new job scheduling methods that optimize cloud
turnaround and execution times.

This paper proposes a new job scheduling mechanism for
cloud computing environment. The proposed mechanism is
based on Ions Motion Optimization (IMO) algorithm. IMO has
two phases, liquid and crystal. These two phases balance the
algorithm behavior between convergence and local optima
avoidance.

II. RELATED WORKS

Glowworm Swarm Optimization (GSO) for solving
independent job scheduling and allocation problem of cloud
computing resources is presented in [28]. The GSO mechanism
considers each glowworm as a job scheduling candidate
solution. The mechanism starts with an initial random
population containing a number of n solutions. After
developing the initial random population, GSO calculates the
fitness value for each glowworm. The calculation of the fitness

Corresponding author: Adil Yousif

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5459-5465 5460

www.etasr.com Hassan & Yousif: Ions Motion Optimization for Cloud Job Scheduling

value starts with dividing each job length by the speed of the
resource the job is assigned to. Then, GSO calculates the
summation of the division results for each glowworm and finds
the maximum fitness value. Authors in [29] proposed Cat
Swarm Optimization (CSO) for solving the independent job
scheduling problem and job allocation to the resources. Each
cat represents a candidate solution. The cat population is
divided into two modes, Seeking Mode (SM) and Tracing
Mode (TM). A new job scheduling mechanism using Firefly
Algorithm to minimize the execution time of jobs is presented
in [30]. Firefly Algorithm is a nature-inspired metaheuristic
algorithm based on the light attractiveness of fireflies. The
mapping process considers each firefly as a job scheduling
solution. The firefly with less brightness is attracted and moved
towards the brighter one. This process continues for several
iterations until the algorithm reaches a specified fitness value
[30]. Authors in [31] emphasize on the performance of
Infrastructure as a Service (IaaS) based on a meta-scheduling
model to accomplish enhanced job scheduling in multiple
clouds. They proposed a new inter-cloud task scheduling
framework and employed policies to improve the performance
of participating clouds. A Modified Particle Swarm
Optimization (MPSO) method was introduced for cloud job
scheduling in [10]. MPSO has two important parameters in
cloud scheduling, namely average length and ratio of
successful execution. In [32], a hybrid cloud job scheduling
mechanism using Shortest Job First and Priority based
Scheduling is introduced to enhance the scheduling process. In
[33], a chemical reaction optimization method is presented as
an optimization method for cloud job scheduling problem. The
method maps the cloud job scheduling problem to chemical
reaction behaviors. This method has shorter execution time
compared to the Firefly Algorithm and GSO according to the
experimentation results. The cloud job scheduling problem is
modeled using shark smell optimization problem in [34]. The
results of the shark smell job scheduling method outperformed
the Firefly Algorithms’. A cuckoo-inspired cloud job
scheduling mechanism is proposed in [35].

III. IONS MOTION OPTIMIZATION

IMO algorithm [36] is a metaheuristic algorithm proposed
for solving optimization problems. IMO as its name suggests is
inspired from ion properties in nature, it mimics the attraction
and repulsion forces between ions. IMO is population based, it
divides the population into two sets of negative and positive
charged ions. These ions move in the search space according to
a simple rule (ions with the same charge tend to repel each
other while ions with opposite charges attract each other) [37,
38]. Ions in IMO can be in two different phases, liquid phase
and crystal phase. In liquid phase, ions move around in the
search space more freely. The repulsion forces are ignored in
this phase to reassure exploration. The only factor that affects
the attraction force is the distance between ions, while force is
inversely proportional to the distance between ions [38, 39]. As
a result, search agents of IMO eventually converge toward a
solution in the search space, and the algorithm enters the
crystal phase. Crystal phase implies that ions have converged
toward a point in the search space. Though, this point could be
a local minimum [40, 41] due to the unknown characteristics of
the search space. Therefore, crystal phase aims to solve this

entrapment by randomly relocating ions in the search space in
respect to the best ions. Nevertheless, the mechanism used for
transiting from liquid to crystal phases is to check if the
average fitness of the worst ions is equal or smaller than the
fitness of the best ions [42, 43]. IMO has been applied to solve
different computation problems such as tackling the short-term
hydrothermal scheduling problem [40], optimum coverage in
wireless sensor networks [44], and optimal robot path planning
[42].

IV. THE PROPOSED IMO-BASED SCHEDULING MECHANISM

A. Proposed Mechanism Description

IMO starts by initializing a population of search agents
(Ions). Each ���	 is defined by a number of attributes: 	�
�����, ℎ���� and ��
���� from the opposite	��
����. ���		�
����� represents a feasible scheduling solution and is

defined as a vector of integer values ���������� of 	� length (where �	 is the total number of tasks) and its values fall in the
range	[0	, � − 1] (where �		is the total number of resources).
IMO then divides the population of ���
 randomly into two
groups (����� and	������), by assigning a value ∈ {0,1} to
the ℎ���� attribute of each 	��� . After ���
 have been
assigned a		�
�����	 and a	ℎ����, IMO evaluates the fitness
of each ��� using the objective function #(%) and determines ��
�	����� and	��
�	������. Ions with similar charge repel
each other while ions with opposite charge attract each other.
The ��
���� for every ��� from the ��
�	����� with
opposite charge is calculated using (1):

�'(,) =	 +�(,) − ���
�)+
�'(,) =	 +�(,) − ���
�)+ (1)

where �'(,) is the distance from �����(,) in the , − �ℎ job and

the ��
�������) in the same job, �'(,) is the distance from ������(,) in the , − �ℎ job and the ��
������) in the same

job. After calculating the distance, we map the distance to the
range [0, 1] by:

-�		��'�
�./,0 =	 .1/,0
2341(56

-�		��'�
�7/,0 =	 71/,0
2341(56 (2)

where -�%'�
� = �8�9��:#;�
�8��
 − 1. After that, the
force can be calculated using the mapped distance by (3):

�<(,) =	 =
=	>?@A.C/EFGGHIJ/KLM/,0

�<(,) =	 =
=	>?@A.C/EFGGHIJ/KLM/,0 (3)

where �<(,) and �<(,) are the force for the � − �ℎ anion and

cation in job , respectively.
Now, the new position of anion and cation are updated as in

(4) and (5):

�(,) =	�(,) +	�<(,) × PQRSTUV − �(,)W (4)

�(,) =	�(,) +	�<(,) × (XRSTUV − �(,)) (5)

where �(,) is the element of the � − �ℎ Anion in , − �ℎ job

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5459-5465 5461

www.etasr.com Hassan & Yousif: Ions Motion Optimization for Cloud Job Scheduling

dimension and �(,) is the element of the � − �ℎ Cation in , − �ℎ

job dimension.

B. The Proposed IMO Pseudocode

The pseudocode that describes the proposed IMO cloud job
scheduling mechanism follows.

Initialize parameters: PopSize, CbestFit, AbestFit,
CworstFit, AworstFit, BestIon

Let Pop be the set of ions 1, 2, 3, ... , PopSize
Assign random solution (position) to each ion
Assign a charge (Anion or Cation) to each ion
While (stopping criteria not met) do
For each ions do
Evaluate fitness using #(%)
Determine BestIon, CbestFit, AbestFit, CworstFit,

AworstFit
Calculate distance form the best ion with opposite charge

using: �'(,) = 	 +�(,) −���
�)+ and �'(,) =	 +�(,) − ���
�)+
Calculate force by �<(,) =	 =

=	>?@A.C/MJ/,0 and �<(,) = 	 =
=	>?@A.C/YJ/,0

End for
If (CbestFit≥CworstFit/2 and AbestFit≥AworstFit/2) then
Get Ө[andӨ\ randomly in interval [-1, 1]
Get α randomly in interval [0, 1]
If (α>0.5) then �(=	�(+	Ө[× (�9�
� − 1)
Else �(=	�(+	Ө[× (�9�
�)
End If
Get α randomly in interval [0, 1]
If (α>0.5) then C^ =	C^ +	Ө_ × (Abest − 1)
Else �(=	�(+	Ө\ × (�9�
�)
End If
Get α randomly in interval [0, 1]
If (α>0.05) then
Re-initialize �(and �(
End If
End If
End while
Output the position of the best ion

C. The Proposed IMO for Cloud Job Scheduling in Details

Assume we have a set of � jobs to be scheduled among a
set of � resources where � > � as in Table I.

e =	 [f=, f_, fg, fh,… , fj], - =	 [;=, ;_, ;g, ;h, … ,;k]
Let � = 6	,�9
 and � = 4	��
�8��
 as in Table II.

TABLE I. EXAMPLE JOBS LENGTH

Job J1 J2 J3 J4 J5 J6

Cycle 4 8 10 6 12 3

TABLE II. EXAMPLE RESOURCES SPEED

Resource r1 r2 r3 r4

Cycles per second 8 4 2 6

The solving procedure using IMO algorithm to find an
efficient scheduling solution follows.

1) Parameter Initialization

The algorithm begins by defining the population size as n�	o�p�=6 and initializing empty variables for best and worst
ions of both types as well as a variable to store the best ion.

2) Assign Random Solutions to Each Ion

A solution in job scheduling is a mapping of jobs to
resources where the dimension index represents the job index f(
and the number corresponding indicate the resource ;(

q
rr
s
�=�_�g�h�t�uv
ww
x =

q
rr
s
2 3 1 2 4 11 3 4 2 3 22 3 4 1 2 33 4 1 2 4 42 3 3 4 1 13 4 1 2 3 2v

ww
x

3) Divide Ions Randomly to Anions �(and Cations �(

q
rr
s
�=�_�=�g�_�gv
ww
x =

q
rr
s
2 3 1 2 4 11 3 4 2 3 22 3 4 1 2 33 4 1 2 4 42 3 3 4 1 13 4 1 2 3 2v

ww
x

4) Evaluate the Fitness of Each Ion using {(|)

{(|) =
q
rr
s
�=�_�=�g�_�gv
ww
x =

q
rr
s
121613111415v
ww
x

5) Determine �9�
�<��, �9�
�<��, �~��
�<��, �~��
�<��,��
����
Assuming a minimization problem (without loss of

generality), we determine the best anion and cation respectively
by selecting the lowest fitness values among anions and
cations:

�9�
�<�� = 	�=
�9�
�<�� = 	�g
�~��
�<�� = 	�g
�~��
�<�� =	�_
��
���� = 	�g

6) Calculate Distance for Every Ion from the Best Ion with

Opposite Charge

The distance is calculated using Cartesian distance:
Distance from �= to �9�
�<�� = +�=,) − �9�
�)+ = 7
Distance from �_ to �9�
�<�� = +�_,) − �9�
�)+ = 4
Distance from �g to �9�
�<�� = +�g,) − �9�
�)+ = 9
Distance from �= to �9�
�<�� = +�=,) − �9�
�)+ = 9

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5459-5465 5462

www.etasr.com Hassan & Yousif: Ions Motion Optimization for Cloud Job Scheduling

Distance from �_ to �9�
�<�� = +�_,) − �9�
�)+ = 12
Distance from �g to �9�
�<�� = +�g,) − �9�
�)+ = 3

7) Normalize the Distance between Ions

To normalize the distance to the range [0, 1] we need to
calculate the maximum distance between two ions using the
following equation:

-�%'�
� = $�8�9��:#;�
�8��
 − 1& 	× �8�9��:#f�9
	
Then we can map the distance between every two ions

using the equation below:

-�		��'�
� =		1(563j�?2341(56 	
Now we calculate the max distance according to our

problem: -�%'�
� = 18. Then, max distance is evaluated to
obtain the mapped distance to the range [0, 1]

-�		��'�
�(�=	to	�9�
�<��) = 	0.38
-�		��'�
�(�_	to	�9�
�<��) =	 	0.22
-�		��'�
�(�g	to	�9�
�<��) =	 	0.50
-�		��'�
�(�=	to	�9�
�<��) =	 	0.50
-�		��'�
�(�_	to	�9�
�<��) =	 0.66
-�		��'�
�(�g	to	�9�
�<��) = 	0.16

8) Calculate the Attraction Force between Ions

Note that, IMO algorithm assumes that the only factor for
computing the attraction force is the distance between ions. The
mathematical model is:

�<(,) = 	 =
=	>?@A.C/MJ/,0		and		�<(,) =	 =

=	>?@A.C/YJ/,0	
where �<(,) and �<(,) is the resultant attraction force of anions

and cations respectively, and �'(,) represents the resultant

distance of � − �ℎ anion from the best cation, and �'(,)
represents the resultant distance of � − �ℎ cation from the best
anion. Now, we calculate the attraction force for each ion using
above equations:

�<= =		 =
=	>?@A.C/A.�� = 0.56

�<_ = 	 =
=	>�@A.C/A.�� = 0.61

�<g = 	 =
=	>�@A.C/A.�A = 0.55

�<= = 	 =
=	>�@A.C/A.�A = 0.55

�<_ = 	 =
=	>�@A.C/A.�� = 0.53

�<g = 	 =
=	>�@A.C/A.C� = 0.65

9) Update the Positions of Anions and Cations According to

the Force Value

The positions are updated according to the following
equations:

�(,) = 	�(,) +	�<(,) × (�9�
�) − �(,))	

�(,) =	�(,) +	�<(,) × (�9�
�) − �(,))	
Calculation of the new position of �=:

�=,) = ��=,= �=,_ �=,g �=,h �=,t �=,u2 3 1 2 4 1 �
�′=,= = �=,= + 	�<=,= × (�9�
�= − �=,=) = 2
�′=,_ = �=,_ +	�<=,_ × P�9�
�_ − �=,_W = 3
�′=,g = �=,g +	�<=,g × (�9�
�g − �=,g) ≈ 3
�′=,h = �=,h +	�<=,h × (�9�
�h − �=,h) ≈ 1
�′=,t = �=,) +	�<=,t × (�9�
�t − �=,t) ≈ 3
�′=,u = �=,u +	�<=,u × (�9�
�u − �=,u) ≈ 2

The new position of A= is as follows:

�= = $2 3 3 1 3 2&
Calculation of the new position of A_:

�_,) = ��_,= �_,_ �_,g �_,h �_,t �_,u
1 3 4 2 3 2 �

A′_,= ≈ 2

A′_,_ = 3

A′_,g = 4

A′_,h ≈ 1

A′_,t ≈ 2

A′_,u ≈ 3

The new position of A_ is as follows:

�_ = $2 3 4 1 2 3&
10) Entering a Crystal Phase

If (CbestFit≥CworstFit/2 and AbestFit≥AworstFit/2) then
the algorithm will enter a Crystal Phase. The new position of
ions will be updated according to the following pseudocode:

Get α randomly in interval [0, 1]
Ө=	, Ө_ Are a random numbers in interval [-1, 1]
If (α>0.5) then A^ =	A^ +	Ө= × (Cbest − 1)
Else A^ =	A^ +	Ө= × (Cbest)
End If
Get α randomly in interval [0, 1]
If (α > 0.5) then C^ =	C^ +	Ө_ × (Abest − 1)
Else C^ =	C^ +	Ө_ × (Abest)
EndIf
Get α randomly in interval [0, 1]
If (α>0.05) then
Re-initialize C^ and A^ randomly

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5459-5465 5463

www.etasr.com Hassan & Yousif: Ions Motion Optimization for Cloud Job Scheduling

V. EVALUATION AND EXPERIMENTATION

This section covers the experimentation conducted to verify
the applicability of the proposed mechanism and to confirm its
advantages over other metaheuristic mechanisms. Firstly, the
proposed mechanism is compared with First Come First Served
(FCFS) scheduling method and with a random solution using
four different scenarios. Secondly, a simulation comparison is
conducted a between IMO and CSO under two different
scenarios. Finally, a comparison between IMO, CSO and GSO
is conducted.

A. Experimental Settings

The proposed mechanism is simulated using CloudSim
simulation model. The population size of IMO is set to 30 ions
and the maximum number of iterations to 100. Each scenario is
conducted 10 times and the results are recorded. The
processing powers of resources are generated randomly
between 10 and 70, while the lengths of tasks are between 40
and 150.

B. IMO, FCFS and Random Solution Experiment Scenarios

This section presents a comparison of the four experiment
scenarios between the proposed IMO scheduling algorithm,
FCFS algorithm and a randomly generated scheduling solution.
As seen in Table III and Figure 1, IMO algorithm performs
better than the FCFS algorithm and the random solution. Also,
it has the best execution.

TABLE III. IMO FCFS AND RANDOM SOLUTION COMPARISON

RESULTS

Scenario Algorithm Best fitness

First

FCFS 119.37

RANDOM 54.92

IMO 30.596

Second

FCFS 155.1479

RANDOM 88.283

IMO 64.2411

Third

FCFS 406.913

RANDOM 211.07

IMO 90.405

Forth

FCFS 608.2968

RANDOM 383.8813

IMO 232.6167

Fig. 1. Comparison between IMO, FCFS and Random Solution

C. IMO and CSO Comparison Result

In this comparison, the processing speed of resources and
the length of jobs were generated randomly in the intervals [0,

200] and [0, 400] respectively. Both algorithms used the same
jobs and resources specification and both performed 30 runs
and the average execution time was calculated.

1) First Scenario

This scenario considers a number of 50 jobs and 20
resources.

TABLE IV. IMO AND CSO 1ST SCENARIO FITNESS (EXECUTION TIME)

Iteration 1 20 40 60 80 100

IMO fitness 181.54 131.50 105.12 80.51 80.51 76.98

CSO fitness 149.93 110.34 107.39 107.39 102.71 100.51

Fig. 2. Comparison between IMO, CSO, first scenario

As shown in Table IV and Figure 2, although CSO starts
with a better solution and IMO starts with a slightly high
fitness solution, both of them continue to improve the quality
of their solutions. CSO maintains its advantage in the first 30
iterations. But as the iterations continue, the IMO found a
better solution than CSO in iteration 31, overcame CSO and
then continued to improve the performance by reducing
execution time.

2) Second Scenario

This scenario considers 100 jobs and 30 resources.

TABLE V. IMO AND CSO 2ND SCENARIO FITNESS (EXECUTION TIME)

Iteration 1 20 40 60 80 100

IMO Fitness 467.79 295.89 242.64 198.78 188.05 162.29

CSO Fitness 492.67 266.16 259.31 259.31 259.31 259.31

Fig. 3. Comparison between IMO, CSO, second scenario

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5459-5465 5464

www.etasr.com Hassan & Yousif: Ions Motion Optimization for Cloud Job Scheduling

As shown in Table V and Figure 3, IMO starts with a
slightly better solution than CSO, but after the first iteration
CSO came up with a better solution. Both algorithms continued
to improve their solutions. IMO found a solution better than
CSO’s after 30 iterations and continued to improve it. CSO
remained constant after 30 iterations

D. IMO, CSO and GSO Comparison Result

This section presents a comparison between the proposed
mechanism IMO and two other metaheuristic algorithms, CSO
and GSO, using 50 jobs and 20 resources generated randomly
and used by all the three algorithms.

Fig. 4. Comparison between IMO, CSO, and GSO

As shown in Figure 5, IMO started with a good solution but
both GSO and CSO were better during the first 20 iterations.
IMO found a better solution in less than 30 iterations. Both
GSO and CSO did minor improvements to their solutions after
20 iterations and then remained constant while IMO continued

to improve its solution until the 96th iteration.

E. Discussion

It was proved that the IMO algorithm can produce
promising solutions to scheduling problems. IMO performed
100 iterations in the above scenarios, switching between liquid
and crystal phases to overcome local minimum entrapment.
Liquid phases were 80% of the total number of iterations,
evidencing the exploitation ability of IMO. Crystal iterations
were about 20% of the total number of iterations. This proves
that the ions do not trap in a local minimum. Moreover, ions in
IMO move toward the best ion with opposite charge, thus
increasing the number of ions will increase the exploitation of
promising regions in the search space. To conclude, IMO starts
initializing ions (search agents) randomly, then it changes their
location (scheduling solution) and moves them toward the best
location found so far. While this will lead to local minimum
stagnation, however, crystal phases relocate ions around the
best ions found so far randomly.

VI. CONCLUSION

This research proposed a scheduling mechanism for cloud
computing jobs based on Ions Motion Optimization. The

proposed mechanism considers minimizing the execution time
of jobs. This research started by finding an optimal analogy
between IMO algorithm and the problem of job scheduling in
cloud. IMO begins by initializing randomly a population of
ions where each ion position represents a candidate scheduling
solution. Then the algorithm divides the population into two
groups of anions and cations before evaluating the fitness of
each ion using the objective function. The objective function
calculates the execution time of each candidate solution.
Furthermore, ions move toward the best ions from the other
group in the population. IMO continually transits between
liquid and crystal phases to maintain a ratio between
exploitation and exploration of the search space. Liquid phase
guarantees convergence of ions toward the best found solutions
and also guarantees exploiting the promising locations found so
far. Crystal phase relocates ions randomly around the best
solutions found at this point. When compared with two
metaheuristic algorithms using the same set of jobs and
resources, IMO outperformed them. IMO starts the search with
a solution that is slightly better or worse than GSO and CSO,
but it overcomes both algorithms after about 30 iterations in all
scenarios. IMO also proved its advantage over traditional
methods and produced highly competitive solutions having the
less execution time when compared to FCFS.

REFERENCES

[1] B. K. Rani, B. P. Rani, A. V. Babu, “Cloud computing and inter-clouds–

types, topologies and research issues”, Procedia Computer Science, Vol.
50, pp. 24-29, 2015

[2] T. Erl, R. Puttini, Z. Mahmood, Cloud computing: Concepts, technology
and architecture, Prentice Hall, 2013

[3] T. Mathew, K. C. Sekaran, J. Jose, “Study and analysis of various task

scheduling algorithms in the cloud computing environment”,
International Conference on Advances in Computing, Communications

and Informatics, New Delhi, India, September 24-27, 2014

[4] P. Mell, T. Grance, The NIST definition of cloud computing, National
Institute of Standards and Technology, 2011

[5] A. T. Velte, T. J. Velte, R. Elsenpeter, Cloud computing: A practical

approach, McGraw-Hill, 2009

[6] B. Furht, Cloud computing fundamentals, Springer, 2010

[7] S. F. Issawi, A. A. Halees, M. Radi, “An efficient adaptive load
balancing algorithm for cloud computing under Bursty workloads”,

Engineering, Technology & Applied Science Research, Vol. 5, No. 3,
pp. 795-800, 2015

[8] A. Khattara, W. R. C. Khettaf, M. Mostefai, “An efficient metaheuristic
approach for the multi-period technician routing and scheduling

problem”, Engineering, Technology & Applied Science Research, Vol.
9, No. 5, pp. 4718-4723, 2019

[9] A. R. Arunarani, D. Manjula, V. Sugumaran, “Task scheduling

techniques in cloud computing: A literature survey”, Future Generation
Computer Systems, Vol. 91, pp. 407-415, 2019

[10] B. Jana, M. Chakraborty, T. Mandal, “A task scheduling technique based

on particle swarm optimization algorithm in cloud environment”, in:
Soft Computing: Theories and Applications, Proceedings of SoCTA

2017, pp. 525-536, Springer, 2018

[11] M. Haque, R. Islam, M. R. Kabir, F. N. Nur, N. N. Moon, “A priority-
based process scheduling algorithm in cloud computing”, in: Emerging

Technologies in Data Mining and Information Security, Advances in
Intelligent Systems and Computing, Vol. 755, pp. 239-248, Springer,

2018

[12] R. Somula, S. Nalluri, M. NallaKaruppan, S. Ashok, G. Kannayaram,
“Analysis of CPU scheduling algorithms for cloud computing”, in:

Smart Intelligent Computing and Applications, Smart Innovation,
Systems and Technologies, Vol 105, pp. 375-382, Springer, 2018

Engineering, Technology & Applied Science Research Vol. 10, No. 2, 2020, 5459-5465 5465

www.etasr.com Hassan & Yousif: Ions Motion Optimization for Cloud Job Scheduling

[13] O. J. Shirazi, G. Dastghaibyfard, M. M. Raja, “Task scheduling with
firefly algorithm in cloud computing”, Science International, Vol. 27,

No. 1, pp. 167-172, 2014

[14] Y. Miao, “Resource scheduling simulation design of firefly algorithm
based on chaos optimization in cloud computing”, International Journal

of Grid Distributed Computing, Vol. 7, No. 6, pp. 221-228, 2014

[15] M. Aboalama, A. Yousif, “Enhanced job scheduling algorithm for cloud
computing using shortest remaining job first”, International Journal of

Computer Science & Management Studies, Vol. 15, No. 6, pp. 65-68,
2015

[16] Y. P. Dave, A. S. Shelat, D. S. Patel, R. H. Jhaveri, “Various job
scheduling algorithms in cloud computing: A survey”, International

Conference on Information Communication and Embedded Systems,
Chennai, India, February 27-28, 2014

[17] D. Oliveira, A. Brinkmann, N. Rosa, P. Maciel, “Performability

evaluation and optimization of workflow applications in cloud
environments”, Journal of Grid Computing, Vol. 17, pp. 749-770, 2019

[18] L. Zhou, L. Zhang, L. Ren, J. Wang, “Real-time scheduling of cloud

manufacturing services based on dynamic data-driven simulation”, IEEE
Transactions on Industrial Informatics, Vol. 15, No. 9, pp. 5042-5051,

2019

[19] L. Mei, W. K. Chan, T. H. Tse, “A tale of clouds: Paradigm comparisons
and some thoughts on research issues”, IEEE Asia-Pacific Services

Computing Conference, Yilan, Taiwan, December 9-12, 2008

[20] S. Mohanty, S. C. Moharana, H. Das, S. C. Satpathy, “QoS aware group-
based workload scheduling in cloud environment”, in: Data Engineering

and Communication Technology: Proceedings of 3rd ICDECT-2K19,
pp. 953-960, Springer, 2020

[21] C. Li, C. Wang, Y. Luo, “An efficient scheduling optimization strategy

for improving consistency maintenance in edge cloud environment”, The
Journal of Supercomputing, available at: https://doi.org/10.1007/s11227-

019-03133-9, 2020

[22] Z. Tong, H. Chen, X. Deng, K. Li, K. Li, “A scheduling scheme in the

cloud computing environment using deep Q-learning”, Information
Sciences, Vol. 512, pp. 1170-1191, 2020

[23] B. Nayak, S. K. Padhi, P. K. Pattnaik, “Optimization of cloud datacenter

using heuristic strategic approach”, in: Soft Computing and Signal
Processing: Proceedings of ICSCSP 2018, Vol. 1, pp. 91-100, Springer,

2019

[24] S. Ijaz, E. U. Munir, “MOPT: List-based heuristic for scheduling
workflows in cloud environment”, The Journal of Supercomputing, Vol.

75, pp. 3740-3768, 2019

[25] R. Singh, “Hybrid metaheuristic based scheduling with job duplication
for cloud data centers”, in: Harmony Search and Nature Inspired

Optimization Algorithms: Theory and Applications, ICHSA 2018, pp.
989-997, Springer, 2018

[26] M. Aruna, D. Bhanu, S. Karthik, “An improved load balanced

metaheuristic scheduling in cloud”, Cluster Computing, Vol. 22, pp.
10873-10881, 2019

[27] H. Singh, S. Tyagi, P. Kumar, “Scheduling in cloud computing

environment using metaheuristic techniques: A survey”, in: Emerging
Technology in Modelling and Graphics: Proceedings of IEM Graph

2018, pp. 753-763, Springer, 2019

[28] D. I. Esa, A. Yousif, “Glowworm swarm optimization (GSO) for cloud

jobs scheduling”, International Journal of Advanced Science and
Technology, Vol. 96, pp. 71-82, 2016

[29] D. Gabi, A. S. Ismail, A. Zainal, Z. Zakaria, A. Al-Khasawneh, “Hybrid

cat swarm optimization and simulated annealing for dynamic task
scheduling on cloud computing environment”, Journal of Information

and Communication Technology, Vol. 17, No. 3, pp. 435-467, 2018

[30] D. I. Esa, A. Yousif, “Scheduling jobs on cloud computing using firefly
algorithm”, International Journal of Grid and Distributed Computing,

Vol. 9, No. 7, pp. 149-158, 2016

[31] S. Sotiriadis, N. Bessis, A. Anjum, R. Buyya, “An Inter-Cloud Meta-
Scheduling (ICMS) simulation framework: Architecture and

evaluation”, IEEE Transactions on Services Computing, Vol. 11, No. 1,
pp. 5-19, 2018

[32] A. V. Krishna, S. Ramasubbareddy, K. Govinda, “Task scheduling based
on hybrid algorithm for cloud computing”, International Conference on

Intelligent Computing and Smart Communication, Tehri, India, April
20-21, 2019

[33] A. M. Zain, A. Yousif, “Chemical Reaction Optimization (CRO) for

cloud job scheduling”, SN Applied Sciences, Vol. 2, Article ID 53, 2020

[34] Y. M. Suliman, A. Yousif, M. B. Bashir, “Shark smell optimization
(SSO) algorithm for cloud jobs scheduling”, International Conference on

Computing, Riyadh, Saudi Arabia, December 10-12, 2019

[35] E. Aloboud, H. Kurdi, “Cuckoo-inspired job scheduling algorithm for

cloud computing”, Procedia Computer Science, Vol. 151, pp. 1078-
1083, 2019

[36] B. Javidy, A. Hatamlou, S. Mirjalili, “Ions motion algorithm for solving

optimization problems”, Applied Soft Computing, Vol. 32, pp. 72-79,
2015

[37] T. T. Nguyen, M. J. Wang, J. S. Pan, T. K. Dao, T. G. Ngo, “A load

economic dispatch based on ion motion optimization algorithm”, in:
Advances in Intelligent Information Hiding and Multimedia Signal

Processing, pp. 115-125, Springer, 2019

[38] C. H. Yang, K. C. Wu, Y. S. Lin, L. Y. Chuang, H. W. Chang, “Protein
folding prediction in the HP model using ions motion optimization with

a greedy algorithm”, BioData Mining, Vol. 11, Article ID 17, 2018

[39] M. Kumar, J. S. Dhillon, “An experimental study of ion motion
optimization for constraint economic load dispatch problem”,

International Conference on Power Energy, Environment and Intelligent
Control, Greater Noida, India, April 13-14, 2018

[40] S. Das, A. Bhattacharya, A. K. Chakraborty, “Quasi-reflected ions

motion optimization algorithm for short-term hydrothermal scheduling”,
Neural Computing and Applications, Vol. 29, pp. 123-149, 2018

[41] G. Kong, Y. Zhang, A. J. M. Khalaf, S. Panahi, I. Hussain, “Parameter
estimation in a new chaotic memristive system using ions motion

optimization”, The European Physical Journal Special Topics, Vol. 228,
pp. 2133-2145, 2019

[42] J. S. Pan, T. T. Nguyen, S. C. Chu, T. K. Dao, T. G. Ngo, “A multi-

objective ions motion optimization for robot path planning”,
International Conference on Engineering Research and Applications,

Thai Nguyen, Vietnam, December 1-2, 2019

[43] B. Wang, C. Wang, L. Wang, N. Xie, W. Wei, “Recognition of sEMG
hand actions based on cloud adaptive quantum chaos ions motion

algorithm optimized SVM”, Journal of Mechanics in Medicine and
Biology, Vol. 19, No. 6, Article ID 1950047, 2019

[44] T. T. Nguyen, J. S. Pan, T. Y. Wu, T. K. Dao, T. D. Nguyen, “Node

coverage optimization strategy based on ions motion optimization”,
Journal of Network Intelligence, Vol. 4, No. 1, pp. 1-9, 2019

