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Abstract—In this paper, a short review is given on insulating 

materials at very low temperatures. Various insulating materials 

are investigated in terms of phenomena such as partial 
discharges. Some of the factors affecting the behavior of the 

insulating materials at very low temperatures, such as the quality 

of the electrode surface, the stressed insulation volume, and the 

existing bubbles, are also reported and commented upon. 
Proposals for future research are also discussed. 
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I. INTRODUCTION  

Since the discovery of superconduction in 1911, there were 
plans for the design of superconducting cables [1]. After 
several decades from this discovery, the development of 
superconducting cables seemed to be possible. Since the mid-
eighties of the last century, there is a drastic development in 
superconducting research because of the discovery of high 
temperature superconductors (HTS) in the critical temperature 
Tc>T of liquid nitrogen (77K) by Georg Bednorz and Karl 
Mueller of IBM, Rueschlikon, Switzerland. Let us notice that 
the power needed at room temperature for the function of a 
refrigerator at 77K is lower than the one tenth of the power 
needed for the function of a refrigerator at 4 K. Regarding 
superconductivity and its possible applications, it becomes 
apparent that electrical insulation is pivotal to the development 
of reliable energy systems. A breakdown of the electrical 
insulation may have catastrophic consequences for a 
superconducting energy system. A HTS superconducting cable 
offers reduced losses, it is more environment-friendly, it 
increases the reliability of the system and, it is more flexible 
than most traditional cables. There is a hope that HTS 
superconducting cables may give the solution for large urban 
centers in the future, as the global population increases and the 
demand for electricity becomes more acute. To be sure, the 
new technology has to prove that its reliability is at least as 
good – if not superior - as that of the conventional systems. 
Such superconducting cables must withstand probable pressure 
variations as well as some electrical overstressing. In the 
context of this paper, some aspects of the electrical insulation 
for superconducting applications will be mentioned and 

analyzed. Moreover, some proposals for future research will be 
made. 

II. SOME GENERAL COMMENTS 

Electrical insulation is crucial to the good performance of 
very low temperature energy systems or for any energy system 
for that matter. Typical applications of superconducting 
systems are the superconducting faults current limiter (SFCL) 
and the superconducting magnetic energy storage system 
(SMES). HTS transformers are also a possible alternative to 
conventional transformers since they reduce the losses by 60% 
or even more. They are more environment-friendly and they 
use liquid nitrogen instead of mineral oil as insulation and 
coolant. They are more reliable than the conventional 
transformers. Their possible applicability has been 
demonstrated in countries such as Japan, the USA, Germany, 
South Korea and New Zealand [3]. HTS cables have been built 
in the past few decades. Such cables use as insulation either 
non-polar polymer films with liquid helium or nitrogen, or 
polymer films such as cross-linked polyethylene XLPE. In the 
case of underground cables, insulating materials that have been 
used for conventional applications, have been adapted to HTS 
applications. Consequently, materials such as polypropylene 
laminated paper (PPLP) [4], ethylene propylene rubber (EPR), 
XLPE, low-density polyethylene (LDPE) and PTFE have been 
investigated accordingly [4-6]. However, with the requirements 
for higher voltages (e.g. 275kV), superconducting cables had 
considerable dielectric losses [7]. In such voltages, in order to 
reduce dielectric losses, other insulating materials were used 
(e.g. Tyvek – a polyethylene nonwoven fabric – as opposed to 
conventional PPLP, or the ultra high molecular weight 
polyethylene (UHMWPE)) [8-10].  

III. ON SUPERCONDUCTIVITY 

Superconductors transfer practically current with zero 
losses when their temperature falls below a certain value, 
which is called “critical temperature”. Superconductors 
preserve their properties in a region which is defined by three 
quantities, namely the critical current density Jc, the critical 
temperature Tc (the temperature at which the resistance 
becomes zero) and the critical magnetic field Hc (as the 
magnetic field increases the superconductivity of the material is 
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reduced). The higher the values of all three aforementioned 
quantities, the easier becomes the application of the 
superconductors. Increase of one of the aforementioned 
quantities may return the material to its previous (non-
superconducting) state. When a superconductor loses its 
superconducting state, it needs a considerable amount of time 
in order to revert to superconduction, whereas when a 
superconductor has an excessive current, the consequences 
may be deleterious because of the released heat [11, 12]. HTS 
superconductors are more efficient than common 
superconductors which function at lower critical temperature. 
HTS superconductors are in superconducting state at 
temperatures higher than 77K in applications with weak 
magnetic fields. On the contrary, materials of lower critical 
temperatures, such as Nb-Ti and Nb3Sn, must be cooled at 4K 
in order to have superconducting properties. However, in this 
way, their cost rises [13].  

Regarding high voltage cables, there are two main 
categories of cables, the cables of warm dielectric (WD) and 
the cables of cold dielectric (CD). Cables of WD have liquid 
nitrogen whereas the solid insulation can be at room 
temperature. Their insulation can be XLPE, PPLP or ethylene 
propylene rubber (EPR). The insulation is applied on the outer 
wall of the cryostat. This type of cables presents higher losses, 
which in turn cause higher released amounts of heat [14]. In the 
CD cables, the insulating material is on the inner wall of the 
cryostat. In this case, the liquid nitrogen functions both as 
coolant and as dielectric. This type of cables has an increased 
cost but, on the other hand, has lower losses and a higher 
conduction in higher currents [13, 15]. In the Triax cables, all 
three phases are in a single cable. Such a construction reduces 
the electric losses and requires half of the superconducting 
material compared with the CD cables. Triax cables occupy 
less space than the aforementioned WD and CD cables [13]. 

IV. INSULATING MATERIALS FOR SUPERCONDUCTING 

APPLICATIONS, PARTIAL DISCHARGES, AND ELECTRICAL TREES 

As far as cables at very low temperatures are concerned, 
there are four types of insulations: 1) vacuum insulation with 
solid insulators, 2) liquid insulation with solid insulators, 3) 
tape insulation impregnated with liquid helium or liquid 
nitrogen, and 4) liquid helium with solid insulation [4, 16]. It 
goes without saying that in the above cases, the solid insulation 
must be compatible with the liquid or the vacuum, that the 
thermal expansion or contraction must be within certain limits 
and that the cost of construction must be reasonable [17]. 
Generally speaking, an insulation is affected by factors which 
tend to reduce its molecular structure, such as high 
temperatures (which influence the conductivity and the 
generation of partial discharges), mechanical stressing (which 
reduces the distance between the electrodes), affecting thus the 
breakdown strength [18]. Partial discharges are very dangerous 
in very low temperatures since they produce significant 
amounts of heat, leading in this way to the total failure of the 
insulation [1, 16]. In the case of superconducting insulation, 
Partial Discharges (PD) may contribute to the increase of 
dielectric losses. A way to reduce such effects is to increase the 
pressure, preventing therefore the creation of bubbles. In this 
way, PD activity is reduced and the inception voltage increases.  

PD measurements are considered crucial for cryogenic 
applications because PD are the main source of aging and 
breakdown of insulations in such low temperatures. Various 
techniques have been proposed in relation to such 
measurements. Phase-Resolved Partial Discharge (PRPD) 
measurements as well as the Current Pulse Waveform Analysis 
(CPWA) measurements have been proposed for a consequent 
study of PD in very low temperatures insulating systems. 
Whereas the first has the advantage of offering an overall 
picture of the state of the insulation, the latter method can 
obtain detailed individual PD currents pulses together with the 
time transition from PD inception to breakdown with the PD 
detection sensitivity of 0.1pC [4, 19–22]. It has to be noted that 
during the past few years, a new technique was developed [23]. 
The latter technique is named Chaotic Analysis of PD (CAPD) 
and is based on three normalized parameters obtained from two 
consecutive PD pulses, i.e. amplitude difference (Pt ), occurring 
time difference (Tt ) and correlation between Pt and Tt. Authors 
in [23] claim that besides PRPD, their proposed method is 
suitable for HTS applications. 

Electrical treeing in polymers at cryogenic temperatures 
may also be noted. Electrical trees may be the result of PD 
and/or some mechanical stressing. Inception voltages for 
treeing are in general higher than the inception voltages at 
room temperature, and even if the electrical trees start, their 
development is much slower [17, 24]. In [24], a significant 
point is made, namely that, if a polymer is defect-free, it 
contracts heavily at very low temperatures and - inadvertently 
introduced - voids are squeezed out. However, if PD occur in a 
void at cryogenic temperatures, deterioration may proceed 
more rapidly and malignantly than in the case encountered at 
room temperature. 

V. HTS INSULATION 

Insulation is crucial to the successful performance of 
supeconducting apparatus [25]. The characteristics of liquid 
nitrogen (LN2) are fundamental to many HTS applications. 
Moreover, the role of composite insulating systems (from LN2 
and solid insulating materials, such as paper and epoxy) is also 
very important, as well as the gaseous nitrogen (GN2) and the 
vacuum [21]. For the correct, reliable and practical design of an 
HTS insulation is necessary to examine factors that are crucial 
for the cryogenic liquids, such as the state of the electrode 
surfaces, and their effect on the breakdown strength [26]. As 
critical factors influencing the PD behavior and the breakdown 
strength of LN2 are the quality of electrode surfaces, the 
volume of insulation, the presence of bubbles and foreign 
matter [27, 28].  

VI. INFUENCE OF ELECTRODE SURFACE, STRESSED VOLUME 

AND BUBBLES 

It is well known that the breakdown strength of 
conventional insulating materials is affected by the electrode 
surface (quality of the surface as well as size of the electrodes) 
and the stressed volume [29, 30]. Relatively recently, it was 
shown that the breakdown strength decreases with the increase 
of the gap spacing and the electrode area for sub-cooled 
nitrogen (SLN2). Such phenomena were observed because the 
amount of impurities and bubbles increases with the gap 
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spacing and the electrode diameter [31]. In the same 
publication, it was reported that the number and size of bubbles 
as the weak points to cause breakdown can be reduced by high 
pressures in SLN2. Similarly the low temperatures contribute to 
reduce the number and size of bubbles. The question as to 
whether the size effect is due more to the electrode area or to 
the stressed volume in SLN2, was treated in [21, 32]. 
Experimental results revealed that the breakdown mechanism 
changed from an area dominant to volume effective region at 
larger electrode configurations in SLN2 [32]. Such behavior 
was also noted in conventional insulating liquids [29, 30, 33, 
34], i.e. that the influence of the stressed volume is more 
crucial with larger electrodes. 

In the presence of bubbles, breakdown strength is reduced. 
In such a case, the breakdown voltage depends on the bubble 
volume. Relatively recent research indicated the dependence of 
the breakdown strength of SLN2 on the bubble presence. On the 
other hand, in such a case, an increase of pressure may have a 
beneficial effect on the breakdown strength since higher 
pressures suppress vapor bridge formation avoiding thus a 
precipitous drop in breakdown strength [35]. Bubbles represent 
the weak link in SLN2 since the discharge activity starts from 
them. In fact, Paschen’s law is also valid at cryogenic 
temperatures making thus easier the calculation of inception 
voltages [36, 37]. Furthermore, as was reported in [38], the 
development of discharges in bubbles is a process of 
ionizations and hence an increase in pressure affects the 
quantity of micro-bubbles. Increasing pressure and reducing 
temperature may therefore offer an effective means to reduce 
the probability of inception of pre-breakdown streamer activity 
since the aforementioned quantities may influence streamer 
behavior and thus reduce the number of PD events from an 
anode tip [38]. Reducing temperature has as a result the 
condensation of existing bubbles, which in turn leads to a 
decrease of the electrically weak links [39]. A sudden increase 
of temperature may cause – in combination with the electric 
stress – the so-called bubble disturbance. The latter may reduce 
the voltage breakdown from 165kVpeak to 80kVpeak for a gap 
spacing of 8mm with a sphere-plane electrode arrangement [31, 
40]. 

VII. INFUENCE OF UNIFORM AND NON-UNIFORM ELECTRIC 

FIELDS 

The applied electric field has a preponderant role in 
determining the breakdown strength of insulating materials 
and/or of the insulation in electrical apparatus [16]. Insulating 
materials at very low temperatures could not be an exception to 
the rule. Earlier work indicated that the breakdown voltage of 
liquid helium (He) and liquid nitrogen (LN2) is higher with 
uniform fields than with non-uniform fields [27]. The initial 
increase of breakdown voltage with the gap spacing for both 
the aforementioned liquids, even with a point-plane electrode 
arrangement, and the subsequent leveling-off may be due to the 
low latent heat of cryogenic liquids, which may lead to the 
creation of vapor around the point electrode [27]. Similar data 
to [27] were collected in [41], where authors observed that the 
impulse breakdown voltage is higher than the AC breakdown 
voltage for both sphere-plane and point-plane electrodes, with 
the former giving a much more distinct difference than the 

latter. Agreeing qualitatively with [27], the leveling-off of the 
breakdown voltage with increasing the gap spacing – in a 
sphere-plane arrangement - was also reported in [42], where the 
leveling-off was interpreted with the stabilization of the 
maximum electric field at larger gaps. The importance of 
bubbles on breakdown strength with various electrode 
arrangements was pointed out in [42]. More generated bubbles 
lower significantly the AC breakdown strength with both 
sphere-sphere and with tape electrodes, their effect being more 
emphatic with the latter [42]. The applied electric field has a 
vital influence on streamer propagation. Streamer propagation 
is to a significant extent determined by the macroscopic electric 
field [17, 27]. Experimenting with sphere-plane electrodes and 
with pressures of 500kPa, it was shown that positive streamers 
have a higher velocity than negative streamers and thus, 
positive streamers result in lower breakdown strength [17, 27]. 
Such data were confirmed in yet another publication, where it 
was indicated that a transition from slow to fast positive 
streamer was observed at a threshold voltage below the 
breakdown voltage [43]. In [43], it was pointed out that at very 
low temperatures, with sphere-plane electrodes, and with 
impulse voltages there is a remarkable polarity effect [44], 
namely that at positive polarity a faster streamer was noticed 
whereas with negative polarity the phenomenon was slower. In 
this respect there is agreement between [45] and [17, 27]. 

VIII. ON THE DEGRADATION OF COMPOSITE INSULATING 

SYSTEMS 

PD consist one of the major sources of degradation of 
insulating materials [46, 47]. In an non-uniform electrode 
system containing a disc of PTFE in LN2, an increase of the 
applied voltage led to an increase of the cumulative number of 
PD as well as of their maximum values [38]. An increase of 
pressure in such an insulating system from 100kPa to 400kPa, 
reduces the PD number, whereas a reduction of temperature 
does not have any remarkable effect on the slow negative 
streamers. On the contrary, a reduction in temperature causes a 
reduction of the fast positive streamers [38]. Further studies 
regarding the effect of pressure on the inception stress of a 
composite insulating system consisting of LN2 /polypropylene, 
indicated a decrease of inception stress by about 13% - 40% 
when the pressure was reduced from 200kPa to 100kPa [48]. In 
a system consisting of LN2/polypropylene laminated paper 
(PPLP) with butt gaps, it was noted that the inception stress 
depended on the butt gap thickness and that thicker butt gaps 
resulted in a larger inception stress drop. This is probably due 
to the existing probability of weak points of the electrical 
insulation at butt gaps [49]. Regarding the role of butt gaps and 
their related parameters, there is a striking similarity between 
the observations of the above publication and those reported 
using conventional insulating systems [50, 51], i.e. that the butt 
gaps – if not well impregnated – may be the weak point of a 
composite insulation. PD current pulses recorded at pressures 
of 0.1MPa, 0.12MPa, 0.15MPa, and 0.2MPa, confirmed – in a 
more recent publication - the above observations, namely that 
with increasing pressure, the PD current pulses become smaller 
and smaller [21].  

Solid insulators are used in combination with LN2  for some 
HTS applications. Various solid insulating materials have been 
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tried, such as PPLP, Tyvek, Nomex, Kapton, PVA, PMMA, 
PVB and PA66. The breakdown strength of PPLP, Kapton and 
PA66 was shown to be superior to the breakdown strength of 
other materials [52]. In yet another study by the same group of 
authors, it was indicated that the breakdown strength of 
Kapton/LN2, polycarbonate/LN2, G10/LN2 (G10 being 
fiberglass reinforced plastic) and polyetherimide/LN2 depends 
on the frequency, and it indeed decreases with frequency [53]. 
Such a decrease is possibly due to the dissipation of space 
charge in the dielectric. According to earlier works, charge 
dissipation from charge traps depends on the frequency of the 
applied voltage leading to reduced partial discharge at low 
frequency [54, 55]. The properties of solid insulation at very 
low temperatures depend also on the additives as well as on the 
particular experimental conditions. For example, the HDPE 
presents a small increase of tanδ at 4.2K in comparison with 
the tanδ at 77K. Mechanical properties, such as the modulus of 
elasticity, are also most important since a combination of 
electrical and mechanical stresses may cause cracks [56-60]. 

IX. DISCUSSION AND PROPOSALS FOR FUTURE RESDEARCH 

Regarding HTS applications, it can be said that liquid 
nitrogen is an excellent medium for high voltage apparatus. It 
acts as both insulating and cooling medium for many HTS 
applications. It also has the advantage of low cost. It is 
chemically inert and thus the risk of fire is considerably 
reduced. One of the problems facing the HTS cables is that 
they must have high currents in order to have beneficial 
economic advantages for the companies and the end users. In 
the case of interruption of the superconducting state there may 
be a sudden failure, the latter may provoke a chain reaction 
which in turn may cause a generalized instability of the whole 
network. In such a case, the temperature of the cable may 
increase dramatically. That may have as a consequence that a 
considerable time interval will be required in order for the 
cable to reach its usual superconducting state. The remedy of a 
larger number of lapped tapes is not feasible since that would 
require increasing costs. Consequently, the possible solution 
will be in improving the materials of such a cable. Improved 
HTS cable designs based on YBCO as well as a reduction of 
the cost of cooling systems are proposed [61, 62]. During the 
last decade, the cost of superconducting materials has been 
reduced by about 10% per annum [62] and it is hoped that this 
trend will continue. Furthermore - although the cost of a 
superconducting apparatus is still high in comparison with the 
cost of a conventional apparatus – a factor that has to be taken 
into account is that much lesser space is required to 
accommodate superconducting equipment [63, 64].  

With respect to materials research, further work has to be 
performed regarding the surface discharges in LN2 /polymeric 
insulation uniform electrode arrangements [65]. Moreover, 
very low frequency (VLF) measurements regarding the 
insulation at cryogenic temperatures may offer an effective 
diagnostic technique to assess early insulation degradation [66-
68]. Partial discharges due to defects must be further explored 
with insulating systems at very low temperatures both w.r.t 
their mechanisms and classification, as was done with 
conventional polymers at normal temperature with isolated as 
well as multiple defects [69, 70]. It is needless to say that with 

the advent of polymer nanocomposites, a new prospect opens 
in the field of the applications at very low temperatures [71-
74]. Research in this direction has already been performed and 
the prospects of employing polymer nanocomposites has been 
discussed, although one gets the impression that more effort 
was put into clarifying their mechanical properties rather than 
their electrical properties [75-78]. Also more effort has to be 
made regarding the expected life time of insulating materials 
(and insulating systems) at very low temperatures, especially in 
the view of earlier works on electrical stressing of HTS lapped 
tape insulated model cables [79].  

X. CONCLUSIONS 

In the present paper, a short review is offered regarding 
some aspects of insulating materials at very low temperatures. 
Some factors affecting the dielectric behavior of these materials 
are discussed. Although the very low temperature technology 
presents certain advantages compared to conventional 
technologies, more work has to be done w.r.t. the improvement 
of materials at such temperatures and the economic feasibility 
of such endeavors.  
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