
Engineering, Technology & Applied Science Research Vol. 10, No. 3, 2020, 5678-5682 5678

www.etasr.com Khan et al.: A Review of Software Risk Analysis with the use of Classification Techniques

Software Risk Analysis with the use of Classification

Techniques: A Review

Muhammad Naeem Ahmed Khan

Independent Researcher
Islamabad, Pakistan

mnak2010@gmail.com

Aamir Mehmood Mirza

Department of Computer Science
Baluchistan University of Information

Technology, Engineering and

Management Sciences, Quetta, Pakistan
mirza.aamir@buitms.edu.pk

Imran Saleem

School of Professional Advancement
University of Management and

Technology

Lahore, Pakistan
imran.saleem@umt.edu.pk

Abstract—Risk analysis and management is a critical aspect of

the software development process. Various risks are associated

with every phase of the software development lifecycle. The early

identification of risks in each phase of software development

coupled with mitigating plans can help to reduce the cost of the

product and increase software quality. This study aims to explore

various tools and techniques used in the literature of analyzing

and managing risks. Most risk analysis techniques have been

applied in the requirement analysis phase, so there is a scarcity of

tools supporting automated risk analysis. Accommodating
various types of risk factors to predict the software risks reduces
the accuracy of the classifier.

Keywords-risk analysis; software risk; classification techniques

I. INTRODUCTION

A software risk is a threat that could have a negative effect
on software quality, delay the project or exceed the budget. It is
necessary to identify various types of risk to a software project
during the early phases of Software Development Life Cycle
(SDLC). Software risk poses serious threats to the software
quality as the desired functionality may be compromised. The
specific areas of SDLC which are affected by risks are software
development, testing, and maintenance phases. Software
quality can be ensured by forecasting the risks that an existing
software project can face. For this purpose, we use defect
prevention, defect reduction, and defect containment. Defect
prediction is necessary to forecast the presence of defects in
software modules. For defect prediction, we use historical data
of the past projects and assess how many software defects are
likely to present in the current projects. The purpose of this
study is to find the merits and the demerits of the different
classification techniques that have been applied for defect
prediction. A critical review showing the usefulness of the
various classification techniques on different types of software
project datasets has been conducted in this report.

Developing an efficient software fault/risk prediction
method is a highly demanding challenge. Software fault/risk
prediction plays an important role in analyzing software quality
and balancing software development cost. Early and accurate
prediction of software risk has become a critical issue to project
success. Many researchers have proposed different prediction

approaches such as an Artificial Neural Networks, Fuzzy
Logic, Decision Tree, Bayesian Network (BN), etc. to
overcome the problem of risk in software development. As the
demand for good software quality is increasing, increased
software size and complexity may lead to increasing software
faults which require identification at the early stages of SDLC.

II. LITERATURE REVIEW

Authors in [1] address the way risks affect different
software development efforts. The study explores the causes of
different risks with the use of a BN. The study combines expert
knowledge and V-structure discovery algorithm to generate a
BN that performs causality analysis to manage software
project-related risks and to improve prediction accuracy.
Causality analysis is more useful than correlated analysis as the
later approach does not help in effective risk planning. The
objective of the study is to combine risk analysis and risk
control for effective software risk management. Authors
employ expert knowledge to build a Bayesian network in order
to identify risks. The study is focused on three critical risk
factors, namely inadequate requirements, lack of user
cooperation, and poor project planning. However, 27 equally
important risk factors were identified and Bayesian Network is
efficient only for small datasets. Involving many variables
makes it more complex and different to understand.

The way risks affect the analysis and design stages of
SDLC is addressed in [2], in which a methodology called State-
Based Risk Assessment approach is explored, which is used to
estimate risks for different states of a component and estimates
the risk for the overall scenario on the basis of the entire
component. The study introduced an inter-component State
Dependence Graph that is used to estimate the complexity and
severity of risk assessment. At first, complexity estimates, for
the state of the component within the system, are made. Then,
the severity for the component within the scenario is decided
using the three hazard technique: functional failure analysis,
software failure mode and effect analysis, and software fault
tree analysis. The objective of the study is to estimate the
overall system risks that are based on the scenario risk and the
State Collaboration Test Model of the System (SCOTEM).

Corresponding author: Aamir Mehmood Mirza

Engineering, Technology & Applied Science Research Vol. 10, No. 3, 2020, 5678-5682 5679

www.etasr.com Khan et al.: A Review of Software Risk Analysis with the use of Classification Techniques

Authors in [3] address how risk analysis and planning are
difficult to manage effectively. The authors explore an
empirical integration of intelligent decision support model for
software project risk analysis and planning. The study has two
main contributions: An Integration Framework for Intelligent
Software Risk Planning (IF-ISPRP) and for minimizing the
impact of project risks and a method called MMAKD (Many to
Many Actionable Knowledge Discovery) for complex risk
planning. Both the framework and the method are integrated to
support effectively control software project-related risks. The
objective of the study is to combine risk analysis and risk
planning modules to control risks. The study assumes that
different risk actions can be executed simultaneously where
practically this is not possible as risks are managed in some
order.

Authors in [4] explore different types and categories of risk
and their effects on the software project. The authors elaborate
on different aspects and characteristics of risk systematically.
They also suggest a software tool for risk assessment for
supporting better and quicker decisions. The study combines
different types of risk and categories of risk with their
characteristics. A tool called RISK is used for determining how
an event occurs and to evaluate what consequences it can have
on project performance. The study explores risk analysis,
focusing on quantitative risk analysis, for making a better
decision of what kind of risk has occurred. The objective of the
study is to identify different types of risks and categorize them.
The way project cost and duration are making the budget
estimation difficult for software risk management when trying
to develop a high-quality software system is addressed in [5].
The study improves software process risk management by
using the software process model with risk management and
cost. The study proposes a measurement model that combines
process risk management and trustworthiness metrics. The
study suggests two metrics, one for software risk management
performance and another for trustworthiness that help the
project manager to control risks for every software
development process. The objective of the study is to improve
software risk management, enhancing trustworthiness by
avoiding cost overrun and delays in software development and
also, to use cost control modules that help improving the
software risk management process.

Authors in [6] explored the field of risk management using
a knowledge management conceptual framework, called
Knowledge-Based Risk Management for identifying how
knowledge management helps improving effectiveness. Timely
identification of risk helps improving the overall
implementation and the quality of the product. Handling risks
early in software development helps to reduce the cost of the
product while minimizing delays. The study suggests
integrating knowledge management activities for risk
management and for this purpose, a framework is proposed.
Risk occurrence at the early stages of software development
and its effect on the success of the final product is explored in
[7]. To achieve quality software products in the shortest time,
the Goal-Driven Software Development Risk Management
Model (GSRM) model is presented that is used to identify and
analyze goals, risk, and treatment actions at the early stages of
the SDLC. The study presents a layer-based modeling

framework that supports software development risk
management. It performs activities by using suitable tasks,
methods and techniques. The framework is categorized into
five dimensions. The objective of the study is to explore risk at
early SDLC by using a method called Goal-Driven Software
Development Risk Management (GSRM), that performs a
treatment action at the early stages of the process, particularly
in the requirement phase.

The way faults affect software quality and cost is addressed
in [8]. The study combines fuzzy measures to generate
concepts connected to the fuzzy integral to achieve better
prediction performance of the software module. The objective
of the study is to minimize cost and improve the software
development process by early prediction of fault-prone
software. The authors employ object-oriented metrics and
method level metrics for constructing a model that establishes
the relationship between software metrics and fault-prones and
does not require expert knowledge. Using fuzzy integral for
software fault prediction provides significant advantages due to
its ability. The major limitation of the proposed approach is
that it is computationally extensive and building a model using
this technique requires a lot of effort.

Author in [9] addresses how risky software projects affect
the overall project success and software risk results, schedule
and cost overload. The study explores accuracy evaluation
criteria and performance charts to predict whether the project is
risky by using a three-layered neural network with back
propagation. The study proposes an algorithm which can
understand complex patterns with a three-layered neural
network architecture. The purpose of using complex datasets is
to build a predictive model for the risky nature of projects. The
objective of the study is to control risk at an early stage of the
software development and minimize cost and time of software
construction, while improving the performance of the project.
Authors in [10] explore different classification approaches for
the purpose of software defect prediction. The objective of the
study is to create a cost-sensitive Artificial Neural Network
(ANN) by using the ABC algorithm for efficient software
defect prediction. The study suggests the Expected Cost of
Misclassification (ECM) technique for converting an ANN into
a cost-sensitive learner. The study utilizes N-fold cross-
validation technique to determine the performance of the
proposed classifier. Authors divide the performance of
classifiers into two subsections, regardless and regarding cost
sensitivity. Both metrics are used for comparison with other
studies. The study proposes a classifier for the software defect
prediction problem.

Authors in [11] explore how the estimation of risk at the
early stages of software development affects reliability and
software cost. The study suggests a new fuzzy rule base
algorithm for the validation of the proposed fuzzy rule base
model while data of 20 actual software projects have been
used. The objective of the study is to predict faults at the early
stages of SDLC, i.e. requirement analysis phase or design
phase for developing highly desirable software with optimal
cost. Authors in [12] address how risk and potential failure
affect systems, products, and processes. The study suggests that
Failure Mode and Effect Analysis (FMEA) can identify failures

Engineering, Technology & Applied Science Research Vol. 10, No. 3, 2020, 5678-5682 5680

www.etasr.com Khan et al.: A Review of Software Risk Analysis with the use of Classification Techniques

in a system by a Risk Priority Number (RPN) which lacks
some deficiency and affects effectiveness. The objective of the
study is to identify potential failure modes, evaluate their
effects and causes, and find the solution to eliminate or reduce
the occurrence of failures by using the proposed TOPSIS
approach. FMEA techniques lack effectiveness because two
different failure modes may have the same RPN but could have
different risk implications, and FMEA doesn’t differentiate
between risk implications. To overcome this issue the TOSIS
method has been applied to properly manage the risk. TOPSIS
is based on linguistic terms with their rating of failure modes.
The limitation of the proposed approach is that it involves both
subjective and objective analysis.

Author in [13] explores how the fault proneness affects
software quality. A logistic regression method and six machine
learning methods (Decision Tree, Support Vector Machine,
Group Method of Data Handling Method, Artificial Neural
Network, Cascade Correlation Network, and Gene Expression
Programming) are analyzed and compared in order to find the
relationship between static code metrics and fault proneness.
The objective of the study is to develop good quality software
by using machine learning methods for analyzing and
predicting faults in the early phases of SDLC. The author
compared the predictive facility of the models by using Area
Under Curve (AUC) that measures Receiver Operating
Characteristic (ROC). The results of LR and Machine Learning
(ML) methods were compared in the use of two datasets. As a
result, the ML method was found to perform better than LR.

Authors in [14] address the way defects affect software
maintenance, accuracy, trustworthiness, and evolution. The
study explores a defect prediction classification model to
reduce the defects that affect the performance of a project or
product. This study finds an extension of the ordinal
association to relational association rules that predict whether
the software module is or not defective and performs an
experiment to evaluate the proposed classification model,
which is based on relational association rule mining and
compares it with other software detection approaches. The
objective is to build defect-free high-quality software by
identifying and predicting defects.

Authors in [15] address how a two-way decision method
causes high misclassification error rates and costs. The study
suggests three-way decisions to overcome the problem of two-
way decision that includes two kinds of actions based on
software defect prediction. In each experiment, 10-fold cross-
validation has been performed to show that the proposed
method reduces errors and cost. Authors in [16] proposed the
TGR model to define risk features in requirement engineering,
based on the original Tropos and risk analysis methodologies.
The approach encourages the development of numerous cost-
based, risk-based and goal-based solutions. This analysis could
find the best solution that meets the demands of lower costs
and risks. The study also implemented a prototype application
to prove the concept. The application takes as input various
goals, events and responses and produces various combinations
of solutions to enable end-users to select the best one.

Risk management in Open Source Software (OSS) is
addressed in [17]. One of the key technologies for achieving

shorter time-to-market and better quality of the software system
is the reuse of software components from third-party vendors.
Such modules, also known as Off-the-Shelf components, come
in two types: Commercial-Off-The-Shelf and OSS components.
To make an effective use of OSS components, it is important to
find how to change the development processes and methods.
The study suggests many measures that may be implemented
for process improvement and risk reduction depending on the
Open-Source Software components, though not all are
necessary for a project. Machine learning techniques are
employed to build a model predicting potentially faulty
modules with respect to their metric data within a given set of
software modules [18]. To that end, the Naive Bayesian
Classification is used as authors have argued that in many
complex real-world situations, Naive Bayesian performs better
than techniques such as decision trees. The data sets used in the
experiments are organized into two categories, i.e. learning
datasets and prediction datasets. Risk factors are analyzed
using the proposed model to enhance the risk assessment
process.

Risk management has also been used in project
management. The main aim of the authors in [19] was to
understand the principles of risk assessment in order to
establish a model for risk management of IT projects. The
proposed conceptual model is based on a synthesis of the
PMBOK guide and the risk management framework of PMI by
incorporating different areas of expertise extracted from these
manuals. Integrating these principles allows the early start of
the risk management phase in the project by including key
stakeholders in the lifecycle, regularly assessing project threats
during the project lifecycle, and creating risk reduction
strategies to better match projects with the company's strategy.
The effects of uncertainty on the project and the risk event as a
consequence of uncertainty are analyzed in [20]. The
uncertainty index is proposed as a quantitative measure for
assessing project uncertainty. This is done by using entropy as
an indicator of system disorder and lack of information. Using
this index, the uncertainty of each activity and its increase due
to risk effects and changes in project uncertainty as a function
of time can be assessed. The proposed solution is implemented
and analyzed as a case study. The results can be useful for
project managers and other stakeholders in selecting the most
effective methods for controlling uncertainty and risk
management.

III. CRITICAL EVALUATION

A critical analysis of selected studies is provided in Table I.

IV. CONCLUSION

In this study, we reviewed the latest research pertaining to
software risk assessment, software fault prediction, and risk
management. The aim of the study was to discover various
classifiers that have been tried for defect prediction. Commonly
used classification techniques are ANN, ABC algorithm, fuzzy
integral, fuzzy hybrid TOPSIS approach, BN, fuzzy rule base
model, etc. For classification, various types of software project
datasets have been used. It is worth mentioning that some
researchers combined risk analysis and risk control
mechanisms for effective software risk management

Engineering, Technology & Applied Science Research Vol. 10, No. 3, 2020, 5678-5682 5681

www.etasr.com Khan et al.: A Review of Software Risk Analysis with the use of Classification Techniques

TABLE I. CRITICAL EVALUATION OF SELECTED STUDIES

Ref Area of focus Model and tools used
Algorithms and datasets

used

SDLC phases

covered
Risk dimensions

Risk categories

and factors

identified

Validation

parameters

[6]

Software project risk

analysis and

management

Probabilistic model

BN with following

causality constraints:

1. Expert knowledge

2.V-Structure discovery

Requirement

- Organization

environment

- User risks

- Requirement risks

- Project complexity

- Planning and control

- Team test

Categories: 6

Factors: 27

Accuracy (10-fold

cross-validation)

[10]

RM process and

integrating knowledge

management activities

for RM

A conceptual framework

called KBRM. KM

processes and risk response

planning to mitigate risks.

Knowledge-Based Risk

Management Model

(KBRM)

All
Risk response

planning
Categories: 1

Improves project

effectiveness

]16[
Risk on analysis of

SDLC

A state-based risk

assessment approach.

SCOTEM

Functional failure

analysis, software failure

mode and effect analysis,

software fault tree

analysis

Design

Scenario risks, risks at

analysis and design

stages

Categories: 2

Experiments to

prove efficiency and

comparison with

existing methods.

]11[
Manageability of risk

analysis and planning.

An integrative framework

(IF-ISPRP).

MMAKD

-

Analysis and

planning

phase

- Organization

environment.

- User risks.

- Requirement risks.

- Project complexity.

- Planning and control.

- Team test.

Categories: 6

Factors: 27

Includes a number of

cost minimal risk

cost actions.

]14[

Risks at the early

stages of the software

development process.

- GSRM.

- Layer based modeling

framework

- Early stages
Risk treatment actions

at early stages.

Categories: 1

Factors: 17

Explore risks to

build a high-quality

software product.

]9[

Different risk types

and categories and

their effects on a

project.

Software tool RISK for

supporting better and quick

decisions.

- All

- Qualitative risk

analysis

- Quantitative risk

analysis

The study focuses on

quantitative risk

analysis.

Categories: 2

Developes and

highlights the

importance of

automated risk

analysis software.

]3[

Software risk

management to

produce high-quality

software

- Software process model

with risk management and

cost.

- Measurement model.

- Trustworthy software

process

- Software development

process

- Product trustworthiness

All

Calculations of

software risk

management

performance and

trustworthiness values

Categories: 2

Control risk for

every subprocess of

the software

development

process.

[1]

Fault-prone effect

software quality and

software cost.

- Fuzzy integral

- Object-oriented metrics

- Method-level metrics

- Fuzzy integral classifier.

- NASA provided

PROMISE and data

program repository

All
Predicting fault-prone

software
Categories: 1

Minimizes cost and

improves software

development process

by early prediction

of fault-prone

software.

]7[

Software risk result

schedule and cost

overload

ANN OMRON dataset Early stages

Requirement,

estimation, planning,

team organization, and

project management

Categories: 5

Factors: 22

100% accuracy with

the NN model and

87.5% when using

logistic regression.

]8[

Software defect

prediction issues

affecting SDLC

ANN, ECM
ABC algorithm

5 datasets
All

Prediction software

defect/risk
Categories: 1

N-fold cross-

validation technique

]4[

Risk estimation at the

early stages of

development affecting

reliability and cost

Fuzzy rule based model
Fuzzy rule based

algorithm

Requirement

phases.

Analysis

phase and

design phase

Requirement fault

density, requirement

stability, review,

inspection,

walkthrough,

experience of

requirement team

Categories: 4
Performance of fault

prediction

]5[

Risk and potential

failure affect systems,

products, processes

TOPSIS FMEA All
Potential failure

modes.
Categories: 1

Eliminate or reduce

failure occurrence.

[15]

Fault proneness

affects software

quality

- Logistic regression

- 6 ML methods

- AUC

D T, SVM, G M DHM,

ANN, CCN, and GEP.

AR1 and AR6 datasets

All
Static code metric and

fault proneness
Categories: 2

10-fold cross-

validation

Engineering, Technology & Applied Science Research Vol. 10, No. 3, 2020, 5678-5682 5682

www.etasr.com Khan et al.: A Review of Software Risk Analysis with the use of Classification Techniques

]17[

Defects affect

software maintenance,

accuracy,

trustworthiness, and

evolution.

-Ordinal association.

-Relational association

rules.

-DPRAR

-NASA datasets
All

Predicting software

defects/faults
Categories: 1

Accuracy (cross

validation)

]12[Three-way decision

- Two-way decision

method.

- Three-way decision

method

- 11 NASA datasets.

- Six algorithms for

comparison.

All

- Defect prone

modules.

- Non defect prone

modules.

- Deferment modules.

Categories: 3
10-fold cross-

validation

]13[

Risk assessment in

requirement

engineering

TGR - Requirement

Cost, risk

prioritization, cost risk

analysis

Categories:

several

Observations made

in terms of cost and

cost and risk. Risk-

based priority of

candidate solutions.

]2[
Risk assessment for

OSS
Risk breakdown structure - All

Quantitative risk

analysis matrix

Categories: 5

Factors: 12

Risk response

actions for OSS.

[18]

Analyze risk factors

and enhance the risk

assessment process

Naïve Bayes classification Naïve Bayes algorithm All

Potentially defected

modules within a

given set of software

modules

Categories: 1

85.77 % accuracy

when using Naïve

Bayes and 82.81%

when using NNs.

REFERENCES

[1] Y. Hu, X. Zhang, E. W. T. Ngai, R. Cai, M. Liu, “Software project risk
analysis using Bayesian Networks with causality constraints”, Decision

Support Systems, Vol. 56, pp. 439–449, 2013

[2] M. Ray, D. P. Mohapatra, “Risk analysis: a guiding force in the
improvement of testing”, IET Software, Vol. 7, No. 1, pp. 29–46, 2013

[3] Y. Hu, J. Du, X. Zhang, X. Hao, E. W. T. Ngai, M. Fan, M. Liu, “An

integrative framework for intelligent software project risk planning”,
Decision Support Systems, Vol. 55, No. 4, pp. 927–937, 2013

[4] Z. Kremljak, C. Kafol, “Types of risk in a system engineering

environment and software tools for risk analysis”, Procedia Engineering,
Vol. 69, pp. 177–183, 2014

[5] J. Li, M. Li, D. Wu, H. Song, “An integrated risk measurement and
optimization model for trustworthy software process management”,

Information Sciences, Vol. 191, pp. 47–60, 2012

[6] S. Alhawari, L. Karadsheh, A. N. Talet, E. Mansour, “Knowledge-based
risk management framework for information technology project”,

International Journal of Information Management, Vol. 32, No. 1, pp.
50–65, 2012

[7] S. Islam, H. Mouratidis, E. R. Weippl, “An empirical study on the

implementation and evaluation of a goal-driven software development
risk management model”, Information and Software Technology, Vol.

56, No. 2, pp. 117–133, 2014

[8] C. Jin, S. W. Jin, “Applications of fuzzy integrals for predicting software
fault-prone”, Journal of Intelligent Fuzzy Systems, Vol. 26, No. 2, pp.

721–729, 2014

[9] W. M. Han, “Discriminating risky software project using neural
networks”, Computer Standard & Interfaces, Vol. 40, pp. 15–22, 2015

[10] O. F. Arar, K. Ayan, “Software defect prediction using cost-sensitive

neural network”, Applied Soft Computing, Vol. 33, pp. 263–277, 2015

[11] S. Chatterjee, B. Maji, “A new fuzzy rule based algorithm for estimating

software faults in early phase of development”, Soft Computing, Vol.
20, No. 10, pp. 4023–4035, 2016

[12] H. C. Liu, J. X. You, M. M. Shan, L. N. Shao, “Failure mode and effects

analysis using intuitionistic fuzzy hybrid TOPSIS approach”, Soft
Computing, Vol. 19, No. 4, pp. 1085–1098, 2015

[13] R. Malhotra, “Comparative analysis of statistical and machine learning

methods for predicting faulty modules”, Applied Soft Computing, Vol.
21, pp. 286–297, 2014

[14] G. Czibula, Z. Marian, I. G. Czibula, “Software defect prediction using

relational association rule mining”, Information Sciences, Vol. 264, pp.
260–278, 2014

[15] W. Li, Z. Huang, Q. Li, “Three-way decisions based software defect

prediction”, Knowlegde-Based Systems, Vol. 91, pp. 263–274, 2016

[16] S. N. Bhukya, S. Pabboju, “Software engineering: Risk features in
requirement engineering”, Cluster Computing, Vol. 22, No. S6, pp.

14789–14801, 2019

[17] N. D. Linh, P. D. Hung, V. T. Diep, T. D. Tung, “Risk management in
projects based on Open-Source Software”, 8th International Conference

on Software and Computer Applications, Penang, Malaysia, February,
2019

[18] K. Suresh, R. Dillibabu, “Designing a machine learning based software

risk assessment model using Naïve Bayes algorithm”, TAGA Journal,
Vol. 14, pp. 3141--3147, 2018.

[19] A. E. Yamami, S. Ahriz, K. Mansouri, M. Qbadou, E. Illoussamen,

“Representing IT projects risk management best practices as a
metamodel”, Engineering, Technology & Applied Science Research,

Vol. 7, No. 5, pp. 2062-2067, 2017

[20] A. Chenarani, E. A. Druzhinin, “A quantitative measure for evaluating
project uncertainty under variation and risk effects”, Engineering,

Technology & Applied Science Research, Vol. 7, No. 5, pp. 2083-2088,
2017

