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Abstract—The acceptance rate of Electric Vehicles (EVs) in the 

transport industry has increased substantially due to the 

augmented interest towards sustainable transportation 

initiatives. However, their impact in terms of increased power 

demand on the electric power market can increase real power 
losses, decrease voltage profile, and consequently decrease 

voltage stability margins. It is necessary to install Electric Vehicle 

Charging Stations (EVCSs) and Distributed Generators (DGs) at 

optimal locations to decrease the EV load effect in the Radial 

Distribution System (RDS). This paper addresses a multi-

objective optimization technique to obtain simultaneous EVCS & 
DG placement and sizing. The problem is formulated to optimize 

real power losses, Average Voltage Deviation Index (AVDI), and 

Voltage Stability Index (VSI) of the electrical distribution system. 

Simulation studies were performed on the standard IEEE 33-bus 

and 69-bus test systems. Harries Hawk Optimization (HHO) and 

Teaching-Learning Based Optimization (TLBO) algorithms were 

selected to minimize the system objectives. The simulation 
outcomes reveal that the proposed approach improved system 

performance in all aspects. Among HHO and TLBO, HHO is 

reasonably successful in accomplishing the desired goals. 

Keywords-Electrical Vehicles (EVs); Electric Vehicle Charging 

Stations (EVCSs); renewable energy sources; Distributed 

Generators (DGs); Average Voltage Deviation Index (AVDI); 
Voltage Stability Index (VSI); Harris Hawks Optimization (HHO); 

Teaching-Learning Based Optimization (TLBO)  

I. INTRODUCTION  

Ever-increasing demands for energy, the limited availability 
of fossil fuels, and the global climate change are some major 
concerns of the 21st century. The CO2 emissions from the 
transportation sector are one of the major causes of global 
climate change. Researchers highlighted the significant impact 
of shifting from conventional vehicles to EVs to reduce the 
transport sector's greenhouse gas contribution. Developing 
countries are also attracted to EVs due to the low electricity 
costs as compared to fossil fuel. One of the disadvantages of 
EVs is the driving range limitation. After running a certain 
distance, EVs need to recharge the battery at Charging Stations 

(CSs). Thus, focus must be put on the construction of charging 
infrastructure for large-scale installation of EVs. Coordinated 
EVCS planning is of prevailing importance for the sustainable 
growth of the EV industry. 

In [1], a multi-objective function is built that takes into 
account the performance indexes of the traffic and electrical 
distribution network, including traffic conditions, charging wait 
time, power loss, and node voltage, to plan the charging 
behavior of EVs and achieve optimum efficiency of the entire 
system. Nevertheless, for optimum location, the effect on the 
voltage profile and branch power losses needs to be examined. 
The low sensitivity voltage bus [2] could be the best location 
for the charging station. Nevertheless, this approach fails to 
provide the optimum EVCS on the higher radial bus systems. 
Heuristic algorithms have been developed to optimize the 
placement of EVCS not only for servicing EVs but also to 
minimize losses and thus to increase voltage profile. To 
examine the effect of charging EVs on the electrical 
distribution network the Fast Charging Station (FCS) load is 
designed in [3] by taking into account the relationship between 
the power consumption of EVs and grid voltage. The suggested 
model is also compared to the constant ZIP model and constant 
power load model. In [4], the Genetic Algorithm is used mainly 
to optimally place the EVCSs without considering losses and 
conductor thermal limits. This method of positioning EVCSs 
often impacts the reliability of the grid-connected distribution 
system. By reconfiguring the given RDS [5], the effect of the 
charging stations could be minimized. In [6], the location of the 
EVCSs is identified in two stages. The EVCSs’ operation 
spectrum is calculated in the 1st stage using the trip success 
ratio with the account of the volatility of trip distance and 
variability in the remaining electrical charge of the EVs. In the 
2
nd
 stage, the CS spectrum of operation is calculated for 

optimal CS location. In [7], a tri-objective optimization 
function that minimizes the charging station’s levelized cost of 
energy, emissions, and losses on the electrical grid by 
proposing the use of photovoltaic cells and of a battery storage 
system. Most studies concentrate on the optimum location and 
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size of EVCSs [8–12]. Improper positioning and sizing of 
EVCSs hurt the distribution system by increasing the network 
power losses and cause more depreciation in voltage profile. A 
detailed review of EV technologies and the impact of electrical 
demand from Plug-in Electric Vehicles (PEVs) on load profiles 
have been provided in [13]. Authors in [14, 15] addressed the 
problem of dynamic economic dispatch by incorporating PEVs 
that charge patterns into a 24-hour load demand in economic 
and environmental dispatch. Authors in [16] suggested a 
control mechanism to increase the efficiency of the energy 
shared between a photovoltaic generator and an unbalanced 
system. In [17], the detrimental impact on the distribution 
network of resulting EVCS loads is analyzed for voltage 
stability, reliability indices, power losses, and economic loss of 
the IEEE 33 bus system. In [18], the simultaneous placement of 
EVCSs and DGs in the distribution system is proposed in order 
to reduce EV user charge and Network Power Losses (NPL) 
cost for the same station development cost and DG investment. 
Non-dominated sorting Genetic Algorithm II was utilized for 
achieving the optimal placement of EVCS and DGs. The 
accuracy of the proposed methodology is checked on the 118 
bus system.  

Authors in [19] proposed a multi-objective function by 
considering the daily real power losses and voltage deviations 
under a 24-hour load pattern, including residential, industrial, 
and commercial loads. Particle Swarm Optimization (PSO) and 
Butterfly Optimization (BO) algorithms were applied to 
minimize the desired objectives. A repeated forward-backward 
load flow was used to determine losses and voltages. 
Compared to PSO, BO does well in achieving the desired 
goals. In [20], a multi-objective hybrid Shuffled Frog Leap 
Teaching Learning Based Optimization (SFL-TLBO) 
algorithm was proposed for better planning of EVCSs and DGs 
in the combined electrical distribution and transportation 
network, considering the objectives of voltage deviation, power 
loss, DG power cost, and energy consumption. The proposed 
model has been assessed on the IEEE 118 bus system and was 
confirmed to be accurate and stable for different EV population 
levels. When considering a large number of PEVs charging and 
discharging during peak and off-peak grid hours, the optimum 
positioning of EVs on the IEEE-33 radial distribution system 
using the PSO-CFA optimization algorithm was suggested in 
[21] to reduce power losses and enhance voltage profile. In 
[22], the Artificial Bee Colony (ABC) algorithm was proposed 
for optimal placement of Battery Swapping Stations (BSS) and 
DG in the RDS to mitigate the power loss increment due to the 
EV load. If both the DG and BSS are configured concurrently, 
the system's power losses and reliability are significantly 
improved. Accordingly, the authors concluded that the 
simultaneous placement of DG and BSS systems is the best 
choice to get the maximum benefit from the deployment of DG 
and BSS in the network. PSO algorithm [23] was used to 
reduce real power losses and enhance the voltage profile of the 
system with optimal placement of charging stations. 

This paper's main contributions are: 

• Identifying the optimal locations of EVCSs by considering 
the distribution system losses, AVDI, and VSI of RDS. 

• Finding optimum DG size and location by considering 
optimum EVCS load to boost system bus voltage profile 
and reducing RDS power losses. 

• Placing different categories of DGs and EVCSs 
simultaneously while taking into account system constraints 
for minimizing system power losses and better system bus 
voltage regulation. 

• An efficient multi-objective function formed using TLBO 
[24] and HHO [25] algorithms is proposed for finding the 
optimal solution of the optimal number of EVCSs, DGs, 
and their simultaneous positioning and sizing for 
minimizing distribution system losses, AVDI and enhance 
VSI of RDS. 

II. PROBLEM FORMULATION 

A. Objective Function 

The size and placement of EVCSs and DGs should be 
designed to minimize the impact of the increased EV load on 
distribution system’s performance. Radial Distribution System 
(RDS) has a large R/X ratio and because of this basic load flow 
tools such as Newton Raphson or fast decoupled approaches do 
not provide accurate results. An efficient load flow method is 
presented in [26] based on the forward-backward method for 
solving the power flows of RDS. The objectives of this study 
are minimizing power losses, AVDI, and enhancing VSI. The 
objective function for power losses of the system is given by: 

����� = min∑ �� ∗ ��������     (1) 

where Ri is the resistance of the i
th
 branch, Ii is the current 

flowing in the i
th
 branch, i is the branch number and br is the 

total number of branches. AVDI is defined in terms of all bus 
voltage magnitudes are deviation w.r.t. reference voltage 
magnitude 1.0p.u. and is given in: 

����� = 	 ��∑ |1 −��|�����     (2) 

where Vk is the voltage at the k
th
 bus, k is the bus number, and b 

is the total number of buses. The VSI of a receiving end bus of 
a branch can be determined by [27]:  

����� = 	 �|��|� − 4���� � + "�# �$� − 4���# � + � �$|��|�%    (3) 
where Vk is the voltage at k

th
 bus, Pk is the total real power 

demand at the k
th
 bus, Qk is the total reactive power demand at 

the kth bus, rjk is the resistance of the branch ‘jk’, and xjk is the 
reactance of the branch ‘jk’. 

VSIk should be greater than 0 for stable RDS operation. The 
lowest value of VSI can be considered as the overall stability of 
the given system. The ultimate objective function is developed 
to minimize power losses, average voltage deviation, and 
optimize the index of voltage stability. Mathematically: 

&��� = min	'(������ + (������ + (� ) �
*+���,-    (4) 

B. Constraints 

Equality constraints: The constraints for power balance 
requirements: 
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∑ �.�/0��� − �1 = �2     (5) 
∑ ".�/03�� −"1 = "2   (6) 

where PGk and QGk are the active and reactive powers injected 
by DG at the kth bus, PL and QL  are the active and reactive 
power losses at the k

th
 bus, Pd and Qd are the active and reactive 

power demands at the k
th
 bus, and NG is the total number of 

buses. 

Inequality Constraints: The acceptable limitation of 
distribution systems should not extend the highest possible 
allowable power generated from DGs, voltage deviation should 
be within 5%, the number of charging points (nCP) and the 
number of Charging Stations (nCSs) should be between 
minimum and maximum allowable charging points and 
charging stations respectively, i.e.: 

�.�4�5 ≤ �.� ≤	�.�478     (7) 
".�4�5 ≤ ".� ≤	".�478     (8) 

0.95	 ≤ 	�� ≤ 1.05, k = 1,2,3…… . , B	    (9) 
BC�4�5 ≤ BC�	 ≤ 	BC�478     (10) 
BCD4�5 ≤ BCD	 ≤ 	BCD478     (11) 

III. HHO FOR EVCS AND DG SIMULTANEOUS OPTIMAL 
PLANNING 

Harris Hawks Optimization (HHO) was proposed in 2019. 
The harris hawk is a predator bird that lives at steady 
communities found in the southern side of Arizona, United 
States. Harris hawk’s main tactic to catch prey is “surprise 
pounce” and it can also be recognized as the strategy of “seven 
kills”. In this strategy, many hawks try to strike together from 
different directions and concentrate on one rabbit. The assault 
can be easily accomplished by catching the surprised victim in 
a couple of seconds, although sometimes, with regards to the 
prey's escape capability and habits, the “seven kills” can 
include several, short length, rapid dives near the victim for 
several minutes. Harris hawks can display a diverse range of 
hunting styles depending on complex nature and prey's escape 
patterns. When the best hawk (leader) bows down a prey and 
departs, a switching tactic occurs, and one of the party 
members can continue the chase. In different circumstances, 
such switching activities could be examined as they are helpful 
for annoying the escaping rabbit. The main benefit of such 
collaborative tactics is that the harris hawks can pursue to 
exhaustion the detected rabbit which cannot restore its 
defensive capabilities by confusing the predators and usually 
one of the hawks, which is often the most effective and skilled, 
catches the exhausted rabbit quickly and shares it with the 
others. Generally, HHO is modeled into exploration and 
exploitation stages inspired by harris hawks exploration of a 
prey, surprise pounce, and various attacking strategies. 

A. Exploration Phase 

The position of the hawk is changed in the exploration 
phase by random location and the other hawks and is given by 
(12) [25]: 

1 2

3 4 lim lim

( ) | ( ) 2 ( ) |,    0,5
( 1)

( ( ) ( )) ( ( )),   0.5

k k

r m

L t d L t d L t r
L t

L t L t d lb d u l r

− − ≥
+ = 

− − + − <
    (12) 

where L is the hawk's position, Lk is the position of a randomly 
chosen hawk, Lr is the location of prey, t is the present 
iteration, ulim and llim are the threshold limits of the search area, 
d1, d2, d3, d4, and r are five discrete random numbers in [0, 1], 
and Lm is the average location of the present hawks’ 
community, which can be calculated by: 

E4�F� = �
G ∑ EH�F�GH��     (13) 

where Lp is the p
th hawk in the community, and H is the 

number of hawks. 

B. Transition from Exploration to Exploitation 

The HHO algorithm can be transposed from exploration to 
exploitation. The behavior of exploration is modified 
depending on the prey's escaping strength. Mathematically, 
prey's strength to escape can be measured as 

D = 2DI�1 − J
K�    (14) DI = 2L − 1    (15) 

where T is the max number of iterations, S0 is the initial 
strength produced arbitrary in [-1, 1], and d is a random 
number in [0, 1]. When the prey’s escaping strength S is greater 
than 1, HHO grants the hawks the possibility to hunt on various 
regions globally. On the other hand, HHO boosts the local 
search of the best alternatives around the neighborhood when 
the prey's escaping strength is less than 1. 

C. Exploitation Phase 

During this phase, the position of the hawk is changed 
according to the scenarios described below. Its behavior is 
controlled based on the prey's escape strength (S) and the 
prey’s chance to escape successfully (q<0.5) or not (q>0.5) 
before a surprise bounce. 

1) Soft Besiege  

This phase appears when q≥0.5 and |S|≥0.5, and by using 
(16), the hawk adjusts its position: 

E�F + 1� = ∆E�F� − D|NEO�F� − E�F�|    (16) 
where S is the prey's escaping strength, Lq is the position of 
prey, ∆L is the difference between the prey’s position and 
present hawk position, and j is the dive strength. The j and ∆L 
are calculated by [25]: 

∆E�F� = EO�F� − E�F�    (17) 
N = 2�1 − LP�    (18) 

where d5 is a random number in [0, 1] that is modified in each 
iteration. 

2) Hard Besiege 

This phase appears when q≥0.5 and |S|<0.5. In this scenario, 
the hawk updates its position using [25]: 

E�F + 1� = EO�F� − D|∆E�F�|    (19) 
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3) Soft Besiege with Progressive Rapid Dives 

This phase occurs when q<0.5 and |S|≥0.5. The hawk is 
slowly selecting the best possible dive for capturing the prey. 
In this situation the hawk's new position is created as [25]: 

Q = EO�F� − D|NEO�F� − E�F�|    (20) 
" = Q + 	R ∗ ESTU�V�    (21) 

where Y and Q are two recently produced hawks, j is the 
leaping power, N is the number of dimensions, a is an N 
dimension random vector, and Levy is the Levy flight function 
that can be computed as: 

ESTU�W� = 0.01 ∗ X∗Y
|Z|[/]

    (22) 

where µ, ϑ are two separate random numbers created from the 
normal distribution, and σ is described as: 

^ = 	_ `��ab�∗cde)fgh ,	
`)[ijh ,∗b∗�)gk[h ,l

[]
    (23) 

where γ is a constant set to 1.5, and the location of the hawk is 
modified in this phase by: 

E�F + 1� = mY					if	&�Q� < &�E�F��"				if	&�"� < &�L�F��    (24) 
where F is the fitness function and Y and Q are two solutions 
derived from (20) and (21). 

4) Hard Besiege with Progressive Rapid Dives 

This is the last scenario and appears when q<0.5 and 
|S|<0.5. In this condition, the following two new solutions are 
created [25]: 

Q =	 EO�F� − D|NEO�F� −	E4�F�|    (25) 
" = 	Q + 	R ∗ ESTU�V�    (26) 

where Lm is the average location of the hawks in the current 
community. The position of the hawk is subsequently modified 
as: 

E�F + 1� = mY					if	&�Y� < &�E�F��Q				if	&�"� < &�E�F��    (27) 
IV. HHO APPLICATION FOR SOLVING THE OBJECTIVE 

FUNCTION 

In this section, the sequential steps involved in solving the 
problem of optimal allocation of EVCSs and DGs using the 
HHO algorithm are given. 

Step 1) Define the objective function subjected to equality 
and inequality constraints of the design variables and read the 
line and load data. 

Step 2) Initialize the number of hawk searches within the 
upper and lower limits of DG sizes in kW, locations of EVCSs 
and DGs, HHO parameters and maximum number of iterations 
T. 

Step 3) Set iteration count k=1.  

Step 4) Using forward-backward load flow, determine the 
objective function value using (4) for each search hawk. 

Step 5) Identify the best hawk (Lr), which has given the best 
objective function value. 

Step 6) For each hawk Lp, update the values of S, S0, and j 
by using (14), (15), and (18), respectively. 

Step 7) If S≥1, update the hawk’s position by using (12), 
otherwise go to Step 8. 

Step 8) If S≥0.5, go to Step 9 otherwise go to Step 10. 

Step 9) If q≥0.5, update the hawk’s position by using (16) 
otherwise update by using (24) and go to Step 11. 

Step 10) If q≥0.5, update the hawk’s position by using (20) 
otherwise update by using (25) and go to Step 11. 

Step 11) Increment the iteration count k by 1 and if (number 
of iterations<maximum number of iterations) then go to Step 4 
otherwise go to Step 12. 

Step 12) Return the final best solution stored (DG sizes and 
EVCSs-DGs locations). 

Step 13) Run the load flow and determine the power losses, 
average voltage deviation index, and voltage stability index. 

V. RESULTS AND OBSERVATIONS 

This section summarizes the simulation results of the 33-
bus, 69-bus [28] IEEE test systems using the prescribed 
methods for optimizing the location and capacity of DGs along 
with the best placement of EVCS. In this paper, EVCSs and 
DGs locations are categorically studied with three EVCSs and 
Type I, II, III, and IV DGs [29]. In addition to the EV models 
(Chevrolet Volt, Chang An Yidong, Tesla Model X and BMW 
i3) given in Table I, AC/DC level-2 type charging ports (CPs) 
are also considered in the CS design. According to SAE J1772 
standard, this type of CPs can suit both Battery Electric 
Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles 
(PHEVs), and has a maximum power rating of 7kW [30]. Some 
design features of CPs are the EVs types which can charge at a 
time in a particular CS and their power ratings in kW, the 
minimum and maximum number of CPs for different types of 
EVs and correspondingly the minimum and maximum power 
rating of CS (Table I). For instance, if all the CSs are designed 
for only minimum CPs as given in Table I, the power rating of 
1 CS is 975kW. Similarly, for maximum number CPs, the 
demand may increase to 1675.5kW. 

TABLE I.  EVCS FEATURES FOR SIMULATION 

EV Type 
EV power 

rating (kW) 

No. of CPs CS rating (kW) 

Min Max Min Max 

Chevrolet Volt 2.2 25 35 55 77 

Chang An Yidong 3.75 20 30 75 112.5 

Tesla Model X 13 15 25 195 325 

BMW i3 44 10 20 440 880 

SAE J1772 Standard 7 30 40 210 280 

Total power rating of CS (kW) 100 150 975 1674.5 

 

HHO and TLBO algorithms are utilized to decide the 
optimal position of EVCSs and the optimal position and size of 
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the DGs for minimizing distribution system losses, AVDI, and 
enhance VSI of RDS. In this article, the following summaries 
are presented to address the effect of type-I, II, III & IV DGs 
on the system. 

• Scenario 1: RDS without integrating DGs and EVCSs.  

• Scenario 2: RDS with minimum and maximum EVCS load, 
without integrating DGs. 

• Scenario 3: RDS with three optimal locations of EVCSs 
with minimum EVCS load without integrating DGs. 

• Scenario 4: RDS with three optimal locations of EVCSs 
with minimum EVCS load and Type-I, II, III, and IV DG 
integration. 

• Scenario 5: RDS with three optimal locations of EVCSs 
with maximum EVCS load without integrating DGs. 

• Scenario 6: RDS with three optimal locations of EVCSs 
with maximum EVCS load and Type-I, II, III, and IV DG 
integration. 

A. Scenario 1 

1) 33 Bus System 

The cumulative real and reactive demand on the system is 
3715kW and 2300kVar. The minimum voltage of 0.9038p.u is 
observed at bus number 18, which is outside of the prescribed 
limit of ±5% after executing the distribution power flow 
algorithm by using the forward-backward method [26]. 
Moreover, the cumulative active power loss of the system is 
210.9897kW, and the cumulative reactive loss of the system is 
143.1284kVar. The AVDI of the system is 0.0041 and VSImin is 
0.6661. It is recognized that 5.68% of the power is absorbed in 
the form of active power loss in the system. The regulation of 
voltage in the system is 9.63%. 

2) 69 Bus System 

The cumulative real and reactive demand on the system is 
3801.4kW & 2693.6kVAr. The maximum voltage deviation 
occurred at bus 65, and it is the worst among all other busses. 
The voltage at the 65

th
 bus is 0.9092p.u., the cumulative active 

power loss of the system is 224.8807 kW, and the cumulative 
reactive loss of the system is 102.1647 kVAr. The AVDI of the 
system is 0.0014, and VSImin is 0.6823. It can be noticed that 
5.92% of the power is absorbed in the form of active power 
loss in the system. The regulation of voltage in the system is 
9.08%. 

B. Scenario 2 

1) 33 Bus System 

Incorporation of a total of 3 EVCSs load in the system is 
assumed. By imposing a total power demand of 2925kW 
(975kW×3) for 3 CSs with the minimum number of CPs at all 
EVCSs as given in Table I, the new loading condition of the 
test system is determined. According to this, the real power 
load is increased from 3715kW to 6640kW. The corresponding 
test system performance is given in Table II. Due to the 
increased EVCS load, the real losses are increased to 
576.1705kW from 210.9897kW, the average voltage deviation 

index is increased to 0.0108 from 0.0041, the stability index is 
decreased to 0.4984 from 0.6661, and the minimum voltage is 
decreased to 0.8408p.u. from 0.9038p.u. Similarly, for the 
maximum number of CPs in each EVCS, the load can increase 
on the network by 5023.5kW (1674.5×3) for the 3 EVCSs. The 
corresponding system performance is given in Table II. The 
losses are increased to 1024.3908kW, the voltage deviation 
index is raised to 0.0187, the stability index is decreased to 
0.3854, and the minimum voltage reaches 0.7888p.u. 

2) 69 Bus System 

As in the case of the 33-bus test system, 3 EVCSs were 
considered with different CPs. By imposing a total power 
demand of 2925kW for 3 CSs with minimum CPs, the test 
loading condition increased from 3801.4kW to 6726.4kW. Due 
to the increased EV load, the real losses increased to 
613.4994kW from 224.8807kW, the average voltage deviation 
index increased to 0.004 from 0.0014, the stability index 
decreased to 0.5114 from 0.6823, and the minimum voltage 
was reduced to 0.8462p.u. from 0.9092p.u. Similarly, for the 
maximum number of CPs in each EVCS, the load on the 
network increased by 5023.5kW (1674.5×3) for the 3 EVCSs. 
The corresponding system performance is given in Table II. 
The losses increased to 1108.6266kW, the voltage deviation 
index increased to 0.0072, the stability index decreased to 
0.3949, and the minimum voltage reached 0.7935p.u. 

TABLE II.  SYSTEM PERFORMANCE WITH MINIMUM AND MAXIMUM 

EVCS LOAD WITHOUT PLACING-INTEGRATING DGS. 

System Loading condition Ploss (kW) 
AVDI 

(p.u.) 

VSImin 

(p.u.) 

Vmin 

(p.u.) 

33 

Without EVCS load 210.9897 0.0041 0.6661 0.9038 

With minimum EVCS load 

(without optimal 

placement) 

576.1705 0.0108 0.4984 0.8408 

With maximum EVCS load 

(without optimal 

placement) 

1024.3908 0.0187 0.3854 0.7888 

69 

Without EVCS load 224.8807 0.0014 0.6823 0.9092 

With minimum EVCS load 

(without optimal 

placement) 

613.4994 0.004 0.5114 0.8462 

With maximum EVCS load 

(without optimal 

placement) 

1108.6266 0.0072 0.3949 0.7935 

 

C. Scenario 3 

It is assumed that 3 EVCSs are integrated at optimal 
locations in the test systems with a minimum number of CPs at 
best locations (bus-2, 19, and 25), see Table III. The real losses 
are decreased to 295.6474kW from 576.1705kW, the average 
voltage deviation index decreased to 0.0047 from 0.0108, the 
voltage stability index improved to 0.6499 from 0.4984, and 
the minimum voltage increased to 0.8982p.u from 0.8408p.u 
for the 33 bus system. For the 69 bus system, the best locations 
are bus-2, 28, and 47. The losses decreased to 225.2186kW 
from 613.4994kW, AVDI decreased to 0.0014 from 0.004, and 
VSI increased to 0.6822 from 0.51114. Also, the minimum 
voltage increased to 0.9092p.u from 0.8462p.u. 
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TABLE III.  SYSTEM PERFORMANCE WITH EVCS AT OPTIMAL 

LOCATIONS WITHOUT INTEGRATING DGS 

System 
Algo 

rithm 

EV 

locations 

Ploss 

(kW) 

AVDI 

(p.u.) 

VSImin 
(p.u.) 

Vmin 

(p.u) 

33 
HHO 2,19,25 295.6474 0.0047 0.6499 0.8982 

TLBO 2,19,25 295.6474 0.0047 0.6499 0.8982 

69 
HHO 2,28,47 225.2186 0.0014 0.6822 0.9092 

TLBO 2,28,47 225.2186 0.0014 0.6822 0.9092 

 

D. Scenario 4 

The line diagrams of the 33 and 69 bus systems with 
integration of EVCS and DGs are shown in Figures 1-2. 
Placing different types of DGs results to the reduction of power 
loss and to the improvement of the voltage profile as shown in 
Tables IV-V. Total power losses are reduced by 68.07%, 
25.85%,89.05%, and 44.79% for Type-I, II, III, and IV DGs 
placed respectively for HHO and 68.07%, 25.85%,89.02%, and 
45.16% for TLBO. Besides, with multiple DGs placed, the 
voltage profile improved significantly. The minimum voltage 
was 0.9685, 0.9267, 0.9845, and 0.9412p.u. for HHO and 
0.9685, 0.9268, 0.9845, and 0.9409p.u. for TLBO for Type-I, 
II, III, and IV DGs respectively. 

 
Fig. 1.  Single line diagram of the 33 bus system with EVCS and DG 

integration 

 
Fig. 2.  Single line diagram of the 69 bus system with EVCS and DG 

integration 

TABLE IV.  SYSTEM PERFORMANCE OF THE 33 BUS SYSTEM WITH EVCS AND DG INTEGRATION AT OPTIMAL LOCATIONS  

Algorithm / 

Parameter 
EV and DG locations 

DG size 

(kVA) 

Total DG size 

(kVA) 

Ploss 

(kW) 

% Reduction 

in Ploss 

AVDI 

(p.u.) 

VSImin 

(p.u.) 

Vmin 

(p.u.) 

Type-I DG 

HHO 2,19,25 and 13,24,30 837.01,1500 and 1137 3474.01 94.3844 68.07 0.0047 0.8799 0.9685 

TLBO 2,19,25 and 13,24,30 834.61,1500 and 1139.39 3474 94.3847 68.07 0.0047 0.8799 0.9685 

Type-II DG 

HHO 2,19,25 and 13,24,30 382.84,598.3 and 1035 2016.14 219.2107 25.85 0.0047 0.7378 0.9267 

TLBO 2,19,25 and 13,24,30 388.77,584.61 and 1039.01 2021.39 219.2106 25.85 0.0047 0.7378 0.9268 

Type-III DG 

HHO 2,19,25 and 13,24,30 
787.76+j436.64, 

1500+j427.41 and 1155.62+j989 

3443.38+ 

j1853.05 
32.3824 89.05 0.0047 0.9392 0.9845 

TLBO 2,19,25 and 13,24,30 

852.64+j362.65, 

1500+j579.53 and 

1090.52+j1013.99 

3443.16+ 

j1956.17 
32.4586 89.02 0.0047 0.9391 0.9845 

Type-IV DG 

HHO 2,19,25 and 13,24,30 
663.07-j217.94, 

1400-j460.16 and 717.08-j235.69 

2780.15- 

j913.79 
163.2147 44.79 0.0047 0.7846 0.9412 

TLBO 2/19/25 and 13/24/30 
645.41-j212.13, 

1500-j493.02 and 727.71-j239.18 

2873.12- 

j944.33 
162.1358 45.16 0.0047 0.7837 0.9409 

TABLE V.  SYSTEM PERFORMANCE OF THE 69 BUS SYSTEM WITH EVCS AND DG INTEGRATION AT OPTIMAL LOCATIONS  

Algorithm/ 

Parameter 

EV and DG 

locations 

DG size 

(kVA) 

Total DG size 

(kVA) 

Ploss 

(kW) 

% Reduction 

in Ploss 

AVDI 

(p.u.) 

VSImin 

(p.u.) 

Vmin 

(p.u.) 

Type-I DG 

HHO 2,28,47 and 11,17,61 516.98, 387.08 and 1716.7 2620.76 69.6232 69.09 0.0014 0.9185 0.9789 

TLBO 2,28,47 and 11,17,61 523.68,382.42 and 1715.97 2622.07 69.6231 69.09 0.0014 0.918 0.9788 

Type-II DG 

HHO 2,28,47 and 11,17,61 408.34,233.12 and 1231.97 1873.43 145.1159 35.57 0.0014 0.7526 0.9314 

TLBO 2,28,47 and 11,17,61 413.19,230.61 and 1232.42 1876.22 145.1166 35.57 0.0014 0.7526 0.9314 

Type-III DG 

HHO 2,28,47 and 11,17,61 
388.15+j438.23, 

440.43+j179.53 and 1692.93+j1214.89 

2521.51+ 

j1832.65 
4.7502 97.89 0.0014 0.9773 0.9942 

TLBO 2,28,47 and 11,17,61 
622.64+j277.77, 

300+j300.08 and 1629.48+j1275.96 

2552.12+ 

j1853.81 
4.7817 97.88 0.0014 0.9773 0.9943 

Type-IV DG 

HHO 2,28,47 and 11,17,61 
377.71-j124.12, 

294.12-j98.58 and 1255.9-j412.68 

1927.73- 

j633.4 
133.0426 40.93 0.0014 0.8283 0.954 

TLBO 2,28,47 and 11,17,61 
400.03-j131.45, 

276.05-j90.71 and 1255.55-j412.57 

1931.63- 

j634.73 
133.091 40.91 0.0014 0.8283 0.9539 
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E. Scenario 5 

As in Scenario 3, the integration of 3 EVCSs at optimal 
locations in the test systems with a maximum number of CPs at 
best locations (buses 2, 19, and 25) is assumed (Table VI). The 
real losses are decreased to 390.6266kW from 1024.3908kW, 
the average voltage deviation index is decreased to 0.0053 from 
0.0187, the voltage stability index is increased to 0.6381 from 
0.3854 and the minimum voltage at bus-18 is increased to 
0.8941p.u from 0.7888p.u. for the 33 bus system. For the 69 
bus system, the best locations are buses 2, 28, and 47. The 
losses are decreased to 225.5766kW from 1108.6266, AVDI is 
decreased to 0.0014 from 0.0072 and VSI increases to 0.6821 
from 0.3949. Also, the minimum voltage at bus-65 increases to 
0.9092p.u from 0.7935p.u. 

F. Scenario 6 

Placing different types of DGs by HHO and TLBO 
technique results in the reduction of power losses and better 
voltage profile, (Tables VII-VIII). The total power losses are 

reduced by 64.81%, 20.36%, 81.05%, and 45.93% for type-I, 
II, III, and IV DGs placed respectively for HHO and 64.81%, 
20.36%, 81.05%, and 45.93% for TLBO. Besides, with 
multiple DGs placed, the voltage profile has improved 
significantly. The minimum identified voltage was 0.9633, 
0.923, 0.9706, and 0.9395p.u. for HHO and 0.9633, 0.923, 
0.9706, and 0.9395p.u. for TLBO for type-I, II, III, and IV DGs 
respectively. 

TABLE VI.  SYSTEM PERFORMANCE WITH EVCS AND DG 

INTEGRATION AT OPTIMAL LOCATIONS 

System Algorithm 
EV 

locations 

Ploss 

(kW) 

AVDI 

(p.u.) 

VSImin 
(p.u.) 

Vmin 

(p.u.) 

33 
HHO 2,19,25 390.6266 0.0053 0.6381 0.8941 

TLBO 2,19,25 390.6266 0.0053 0.6381 0.8941 

69 
HHO 2,28,47 225.5766 0.0014 0.6821 0.9092 

TLBO 2,28,47 225.5766 0.0014 0.6821 0.9092 

TABLE VII.  SYSTEM PERFORMANCE OF THE 33 BUS SYSTEM WITH EVCS AND DG INTEGRATION AT OPTIMAL LOCATIONS  

Algorithm/ 

Parameter 

EV and DG 

locations 

DG Size 

(kVA) 

Total 

DG size 

(kVA) 

Ploss 

(kW) 

% Reduction 

in Ploss 

AVDI 

(p.u.) 

VSImin 

(p.u.) 

Vmin 

(p.u) 

Type-I DG 

HHO 2,19,25 and 13,24,30 880.91,1500 and 1227.81 3608.72 137.4507 64.81 0.0053 0.8606 0.9633 

TLBO 2,19,25 and 13,24,30 881.1, 1500 and1229.58 3610.68 137.4506 64.81 0.0053 0.8606 0.9633 

Type-II DG 

HHO 2,19,25 and 13,24,30 389.72,638.12 and 1040.4 2068.24 311.0932 20.36 0.0053 0.7258 0.923 

TLBO 2,19,25 and 13,24,30 389.82,638.11 and 1041.18 2069.11 311.0911 20.36 0.0053 0.7258 0.923 

Type-III DG 

HHO 2,19,25 and 13,24,30 
878.82+j381.86, 

1500+j520.82 and 1204.88+j1003.6 

3583.7+ 

j1906.28 
74.0126 81.05 0.0053 0.8872 0.9706 

TLBO 2,19,25 and 13,24,30 
856.93+j378.37, 

1500+j525.62 and 1230.96+j1004.27 

3587.89+ 

j1908.26 
74.0212 81.05 0.0053 0.8872 0.9706 

Type-IV DG 

HHO 2,19,25 and 13,24,30 
682.16-j224.21, 

1500-j493.03 and 804.86-j264.54 

2987.02- 

j981.78 
211.221 45.93 0.0053 0.7792 0.9395 

TLBO 2,19,25 and 13,24,30 
682.44-j224.31, 

1500-j493.03 and 805.87-j264.88 

2988.31- 

j982.22 
211.2217 45.93 0.0053 0.7791 0.9395 

TABLE VIII.  SYSTEM PERFORMANCE OF THE 69 BUS SYSTEM WITH EVCS AND DG INTEGRATION AT OPTIMAL LOCATIONS  

Algorithm/ 

Parameter 

EV and DG 

locations 

DG Size 

(kW) 

Total DG 

size (kW) 

Ploss 

(kW) 

% Reduction 

in Ploss 

AVDI 

(p.u.) 

VSImin 

(p.u.) 

Vmin 

(p.u.) 

Type-I DG 

HHO 2,28,47 and 11,17,61 490.3,396.56 and 1724.6 2611.46 69.876 69.02 0.0014 0.9186 0.979 

TLBO 2,28,47 and 11,17,61 529.49, 380.46 and 1719.77 2629.72 69.8763 69.02 0.0014 0.9185 0.979 

Type-II DG 

HHO 2,28,47 and 11,17,61 412.84,230.23 and 1231.34 1874.41 145.7912 35.37 0.0014 0.7525 0.9314 

TLBO 2,28,47 and 11,17,61 413.21,230.62 and 1232.41 1876.24 145.797 35.37 0.0014 0.7525 0.9314 

Type-III DG 

HHO 2,28,47 and 11,17,61 
416.13+j336.94, 

416.13+j249.35 and 1681.09+j1205.83 

2513.35+ 

j1792.12 
4.7654 97.89 0.0014 0.977 0.9942 

TLBO 2,28,47 and 11,17,61 
438.25+j336.86, 

412.29+j262.19 and 1683.56+j1173.63 

2534.1+ 

j1772.68 
4.7698 97.89 0.0014 0.977 0.9942 

Type-IV DG 

HHO 2,28,47 and 11,17,61 
319.64-j105.03, 

308.58-j101.4 and 1262.96-j415 

1891.18- 

j621.43 
133.6038 40.77 0.0014 0.8282 0.9539 

TLBO 2,28,47 and 11,17,61 
402.82-j132.37, 

276.06-j90.71 and 1256.14-j412.77 

1935.02- 

j635.85 
133.6074 40.77 0.0014 0.8282 0.954 

 

VI. CONCLUSIONS 

Massive EV deployment has adverse impacts on the power 
grid. A significant amount of EVCSs connected to the grid 

increases the system power losses and significant voltage 
variation at remote buses from sources. In this paper, a novel 
approach for the simultaneous allocation of DGs and EVCSs to 
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increase bus voltage profile and decrease power losses in the 
distribution network. In addition to the AC/DC Level-2 EV-
CSs suitable for BEVs and PHEVs, different EV models 
(Chevrolet Volt, Chang An Yidong, Tesla Model X and BMW 
i3) are taken into account while designing the EVCS with 
multiple CPs and all four types of DGs. The multi-objective 
function is formulated and optimized using HHO and TLBO 
algorithms. The simulation results presented on standard IEEE 
33-bus and 69-bus test systems have highlighted the technical 
benefits which can be achieved through the optimal allocation 
of EVCSs and DGs even with increased EV loading conditions. 
The main findings of the simulation are summarized as 
follows: 

• HHO algorithm has superior performance when compared 
to TLBO in assessing optimal size and location of EVCSs 
and DGs. 

• The optimum placement and sizing of the three type-III 
DGs led to significant reduction in power losses and to 
voltage enhancement. 
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