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Abstract—Many real-life machine and computer vision 

applications are focusing on object detection and recognition. In 

recent years, deep learning-based approaches gained increasing 

interest due to their high accuracy levels. License Plate (LP) 

detection and classification have been studied extensively over the 

last decades. However, more accurate and language-independent 
approaches are still required. This paper presents a new 

approach to detect LPs and recognize their country, language, 

and layout. Furthermore, a new LP dataset for both multi-

national and multi-language detection, with either one-line or 

two-line layouts is presented. The YOLOv2 detector with ResNet 

feature extraction core was utilized for LP detection, and a new 

low complexity convolutional neural network architecture was 

proposed to classify LPs. Results show that the proposed 

approach achieves an average detection precision of 99.57%, 

whereas the country, language, and layout classification accuracy 
is 99.33%. 

Keywords-license plate detection; license plate classification; 
LPD; Yolo detector; convolutional neural network; deep learning 

I. INTRODUCTION 

Object detection and classification has attracted a lot of 
research the recent years, with the advancements in vision 
technology, computer technology, and deep learning 
algorithms [1]. Object detection aims to estimate the location of 
objects of interest contained in an image, while object 
classification aims to categorize an object within a certain 
number of categories [2]. Traditional object detection and 
classification approaches have three steps, namely informative 
region selection, feature extraction and classification. In region 
selection, it is possible to scan the entire image using a multi-
scale sliding window, as numerous objects may appear in 
different locations with various sizes and aspect ratios [1]. 
Feature extraction aims to obtain visual features providing a 
semantic and robust representation. Some popular feature 
extraction methods used in the literature are Haar-like features 
[3], Scale-Invariant Feature Transform (SIFT) [4], Histogram 
of Oriented Gradients (HOG) [5], and hybrid feature selection 
techniques [6]. Classification aims to assign a target object in 
one of many categories. Traditional classification approaches 
include Supported Vector Machine (SVM) [7], AdaBoost [8], 
and Deformable Part-based Models (DPM) [9]. Recent 
breakthroughs in Convolutional Neural Network (CNN)-based 

approaches [10] attracted researchers to use Regions with CNN 
(R-CNN) features for object detection [11]. CNN-based 
methods have the capacity to learn complex features with 
deeper architectures and utilize training algorithms to learn 
informative object representations without the need to design 
the features manually [12]. Furthermore, researchers studied 
extensively various CNN models such as AlexNet [10], VGG 
[13], GoogLeNet [14], ResNet [15], and FDREnet [16] to 
improve the accuracy of classification and regression problems 
in machine learning. Generic object detection refers to the 
detection of objects from predefined classes obtaining the 
spatial location (e.g. bounding box) inside an image. It can 
typically be categorized into two types, namely 
regression/classification and region-based methods [17]. 
Region-based methods include R-CNN [11], Fast R-CNN [18], 
Faster R-CNN [19] and Mask R-CNN [20]. On the other hand, 
regression/classification-based methods include YOLO (You 
Only Look Once) [21], SSD [22], YOLOv2 [23] and YOLOv3 
[24]. 

Automatic License Plate Recognition (ALPR) is a group of 
techniques that use License Plate Detection (LPD), character 
segmentation, and character recognition on images to identify 
vehicle LP numbers. ALPR is also referred as License Plate 
Detection and Recognition (LPDR). ALPR is used in various 
real-life applications such as parking systems, electronic toll 
collection, and traffic security and control [25]. State-of-the-art 
object detection algorithms based on deep learning have 
provided promising results for LP country and layout 
classification. However, the multi-orientation and multi-scale 
nature of LPs in addition to distortion and illumination issues, 
make LPD a challenging task to perform [26]. LPD using deep 
learning has been extensively studied over the last decade. 
Authors in [27] proposed the use of a CNN-based Multi-
Directional (MD)-YOLO framework for LPD, but their method 
does not successfully detect small LPs. In [28] a faster R-CNN 
approach was presented, detecting at first vehicle regions and 
then locating the LP in each vehicle region. Its performance 
evaluation results showed 98.39% precision and 96.83% recall. 
A new approach was proposed in [29], referred as YOLO-L, 
where the prospective number and size of LP candidate boxes 
are selected using “k-means++” clustering with a modified 
YOLOv2 model and pre-identification to distinguish LPs from 
similar objects. This method achieved a precision of 98.86% 
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and a recall of 98.86%. Researchers in [30] introduced the 
largest Brazilian LP dataset, referred as UFPR dataset, and 
proposed a four stage LPDR system comprising of vehicle 
detection, LPD, character segmentation, and character 
recognition. The LPD stage used CR-CNN core fast-YOLO, 
obtained a recall of 98.33%. Furthermore, researchers in [31] 
introduced a large and comprehensive Chinese LP dataset 
called CCPD, and proposed an end-to-end LPDR system using 
RPnet in the LPD phase, comparing the detection of Average 
Precision (AP) results to SSD, YOLOv2, and Faster R-CNN 
detection techniques by using 250k unique car LPs. 

On the other hand, little research has been performed on 
multi-language and multi-national LP detection, mostly due to 
the lack of international LP datasets. Nevertheless, a few recent 
studies focused on developing a global end-to-end ALPR 
system, as reported in [32]. Authors in [32] proposed an 
approach for multi-national license plate detection for images 
with complex backgrounds, in which the YUV color space was 
initially used for detecting the rear vehicle lights, and the LP 
area was detected using a histogram-based approach on the 
edge energy map. The utilized dataset comprised of LPs from 
America, China, Serbia, Italy, Pakistan, United Arab Emirates 
(UAE), and Hungary. The dataset had only single-line LPs and 
obtained a detection accuracy of 90%. Researchers in [33] used 
VGG with LSTM to classify the registration country of LPs 
from Latvia, Lithuania, Estonia, Russia, Sweden, Poland, 
Germany, Finland, and Belarus. A recent research used tiny 
YOLOv3 to detect LPs from South Korea, Taiwan, Greece, 
USA, and Croatia [34]. Several approaches expressed interest 
in multi-national LPs, but they tested their detectors on each 
country’s dataset separately, rather than accumulating them 
into one dataset [35-38]. Moreover, multi-language LPs were 
addressed in a few approaches. Authors in [38] proposed a 
mask R-CNN detector for LPs with English and Arabic 
characters from USA and Tunisia. In [39] Korean and English 
LPs were targeted, using the term multi-style detection to refer 
to different country, language and one or two-line LP styles. 
Most of the reported researches studied the LP Classification 
(LPC) problem inside the LPD stage. In these cases, the 
detector determines the bounding box, and at the same time 
gives the class label of an LP. However, in [32, 37] multi-
national LPD was presented by just detecting LPs, without 
providing any other information for nation, language or layout. 
In [33] the classification of detected LPs by the issuing country 
was studied, reporting a classification accuracy of 92.8%. On 
the other hand, authors in [39] proposed a module to classify 
the detected LPs to single and double-line, without reporting its 
accuracy but only the entire system results. 

In this paper, multi-national LPs from USA, Europe (EU), 
Turkey (TR), UAE and Kingdom of Saudi Arabia (KSA) are 
targeted, using YOLOv2 detector with ResNet50 feature 
extraction for LPD. For this purpose, a new dataset, named as 
LPDC2020, was constructed and presented. After the 
segmentation of the detected LPs, a CNN was used to detect 
the country, language and the one or two-line layout of the LP. 
The proposed detector and classifier were also tested on several 
benchmark datasets from those countries, in addition to 
LPDC2020. The proposed approach aims to close the gap in 
multi-national, multi-language and multi-layout LP detection 

problem, by utilizing a single unified system, and to the best of 
our knowledge it is the first and only study incorporating LPs 
from North and South America, Europe, and Middle East (TR, 
UAE and KSA). 

II. DATASETS 

A. LP Datasets Available in the Literature 

Most of the frequently used LP datasets utilized in previous 
researches are available online, and their details are 
summarized in Table I. Any private datasets, not publicly 
accessible, are disregarded.  

TABLE I.  A SUMMARY OF PUBLICLY AVAILABLE LP DATASETS 

Dataset Year # of images Accuracy % Country 

Caltech [40] 1999 126 - USA 

Zemris [41] 2002 510 86.2 Croatia 

UCSD [42] 2005 405 89.5 USA 

Snapshots [43] 2007 97 85 Croatia 

Medialab [44] 2018 730 - Greece 

ReId [45] 2017 77k 96.5 Czech 

UFPR [30] 2018 4500 78.33 Brazil 

 

B. LPDC2020 Dataset 

This paper introduces a new LP dataset, which was 
collected manually using mobile cameras in Turkey, named 
LPDC2020. It has two image sets: vehicular images to train the 
LPD module, and cropped LP images to train the LPC module. 
In addition, due the lack of publicly available Arabic LP 
datasets, images for KSA and UAE LPs available in the 
internet were used. All images were processed and annotated 
manually in a labor-intensive process. Table II shows the 
number of LPD images collected for each country. Some 
sample LPs from different countries with one and two-line 
layouts included in the dataset are shown in Figure 1. Table III 
shows the structure of LPDC2020 classification dataset. It is 
noted that, taking one and two-line layouts into account, the 
LPC dataset incorporates 11 different characteristics. The total 
number of cropped LP images is 29030, containing LP images 
from the previously mentioned countries. 

TABLE II.  A SUMMARY OF LPDC2020 LPD DATASET 

Country TR EU USA KSA UAE Total 

# of images 4182 2636 715 1000 488 9021 

 

 
Fig. 1.  Some sample LPs from different contries with various layouts. 
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TABLE III.  STRUCTURE OF THE LPDC2020 LPC DATASET 

Country 
Language of 

characters 
Layout 

Number of 

instances 

BR Latin 
One-Line 3714 

Two-Line 900 

UAE Arabic 
One-Line 500 

Two-Line 276 

EU Latin 
One-Line 5296 

Two-Line 4350 

KSA Arabic 
One-Line 290 

Two-Line 792 

TR Latin 
One-Line 7771 

Two-Line 3560 

USA Latin One-Line 1401 

 

III. FUNDAMENTALS OF CNN  

The fundamentals of any CNN are the convolutional layers 
consisting of learnable filters having small spatial size and 
specific depth. For an input image I and kernel K the general 
equation of 2D convolution [46] used in computer vision and 
machine learning is defined as: 

(� ∗ �)(�, �) = ∑ ∑ �(� + �, � + )�(�,)		��     (1) 

with i and m being the row indexes, while j and n are the 
column indexes. The activation layer produces an output value 
of the neuron using certain activation functions for a given 
input value. An example is the Rectified Linear Unit (ReLU) 
[10], where the output will be zero for negative input values 
and same as the input in any other case. The second important 
part of CNN is the pooling layer, which is responsible for 
reducing the input’s spatial size by keeping the most important 
activations. This reduces the amount of computations and the 
number of learnable parameters. A dropout layer is used to 
combat overfitting, omitting randomly some neurons in each 
training step by setting their activation values to zero. As a 
result, the network can learn using a random combination of 
neurons. The Fully Connected (FC) layer, also called as dense 
layer [47], is the third important part of CNNs. Each neuron in 
the input layer is connected to all output neurons of this layer. 
The purpose of the FC layer is to learn for non-linear 
combinations of features. For x neurons input, learnable weight 
matrix W, and learnable bias vector b, the output of the fully 
connected layer y can be expressed as: 

� = �� + �    (2) 
At the end of the architecture, i.e. after the last fully 

connected layer, a Softmax layer is used. This layer is used for 
classification problems, providing a probabilistic interpretation 
of the input with respect to the sum of all input exponentials, 
declared as: 

�������(�)� = ���
∑ ����� ! 	    (3) 

This layer is also called the loss function layer, since during 
training a loss function is applied at the end of the CNN. In 
general, for N samples, the Mean Square Error (MSE) can be 
used in object detection as in (4) and cross-entropy function is 
used for classification problems as in (5) [47]: 

"#$% = &
'∑ (�� −�)�)*'�+& 						    (4) 

",-.//01�2-.34 = −∑ {�� ln(�)�) + (1 − ��)ln	(1 − �)�)}'�+& 	    (5) 
where, �� is the i-th actual output, and	�)� is the i-th predicted 
output. 

IV. PROPOSED APPROACH 

This research addresses two problems; The detection of an 
LP in an image, and the classification of the detected LP’s 
country, language, and layout. 

A. License Plate Detection 

The proposed approach is based on using the YOLOv2 
detector with the ResNet50 [15] network as the core CNN for 
the LP detector. The utilized ResNet50 architecture is 
displayed in Table IV. 

TABLE IV.  RESNET50 ARCHITECTURE 

Layer Size Filters 

Input 224 × 224 × 3 -------- 

Conv1 112 × 112 × 64 7 × 7 × 64, stride 2 
Max pooling 56 × 56 × 64 3 × 3 max pool, stride 2 

Conv2 56 × 56 × 256 A 1 × 1, 643 × 3, 641 × 1, 256B × 3 
Conv3 28 × 28 × 512 A1 × 1, 1283 × 3, 1281 × 1, 512B × 4 
Conv4 14 × 14 × 1024 A 1 × 1, 2563 × 3, 2561 × 1, 1024B × 6 
Conv5 7 × 7 × 2048 A 1 × 1, 5123 × 3, 5121 × 1, 2048B × 3 

Average pooling 1 × 1 × 2048 7×7 

Fully connected 1 × 1 × 1000 1000 

Softmax 1 × 1 × 1000 -------- 

 

The input layer size of ResNet50 was redesigned to be 
672×672 instead of the original 224×224 pixels. The original 
size did not provide adequate features for LPD. For an original 
vehicular image with small size it will be difficult to detect the 
LP region after reducing its resolution. Naturally, there is a 
restriction on the minimum LP size required inside the 
detector’s input image, due to the network forward propagation 
size of ResNet50, which is 224/7=32. Hence, LPs sized 32×32 
pixels will correspond to a single point in the output feature 
map and consequently, any smaller regions will vanish. The 
proposed detector core network was designed to have a forward 
propagation size of 672/42=16. The first 40 layers of ResNet50 
were used in the proposed YOLOv2 core CNN. The input size 
was set to 672×672 pixels, and the output feature map was 
42×42 pixels. The minimum LP size was set to 16x16 pixels. It 
should be noted that smaller LPs can still be detected but with 
lower precision. In addition, the proposed approach can detect 
LPs sized up to 670×670 pixels. Figure 2 shows the block 
diagram of the proposed approach. The proposed detector had 
27992604≈28M total learnable parameters. 

The YOLOv2 detector divides the input image to an S×S 
grid, where S is the output feature map size of the YOLOv2 
core Resnet40 (i.e. the output of Conv4 layer), and S was set to 
42. Anchor boxes were downsized by forward propagation 
size. YOLOv2 uses A anchor boxes to predict objects. The 
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detection results are the bounding boxes and the confidence 
scores, so that for C class probabilities [23] the number of 
filters is given by: 

E��FG	��	��H�FG� = (I + 5� < J    (6) 
 

 
Fig. 2.  Block diagram of the proposed approach. 

The LP sizes in LPDC2020 were analyzed to select their 
anchor boxes, using the pyramid of anchors method of Faster 
R-CNN [19]. As shown in Figure 3, LP sizes span on a range 
of 10 to 670 pixels. Hence, in order to select anchor boxes of 
high intersection of union (IOU), six minimum LP sizes were 
used. These sizes were defined as 10×10, 10×20, 10×30, 
10×40, 10×50, and 30×14 pixels, with a pyramid level of 15 
and anchor box pyramid scale of 1.3. As a result, 90 anchor 
boxes with a minimum of 0.625 and mean IOU of 0.85 were 
obtained. According to (6), the proposed last YOLOv2 layer 
had 540 filters. 

 

 
Fig. 3.  LP sizes in LPDC2020 dataset. 

B. License Plate Classification 

Α simple CNN was designed for LP classification, and its 
accuracy is compared to VGG [13]. The input image size is set 
to 224×224 pixels, being the same as the input size of VGG 
network for fair comparison. The classification CNN 
construction is shown in Table V. The proposed classifier 
design has a total number of 2635773≈2.64M learnable 
parameters, being much less than the VGG learnable parameter 
amount of 138M. Both a Batch Normalization (BN) [48] and a 
ReLU non-linear activation layer [10] follow each 

convolutional layer. BN normalizes the input batch mean and 
standard deviation, and then performs scaling and shifting 
based on learnable scale and shift parameters [48]. All 
convolution kernels have a size of 5×5 with stride 1 without 
padding. Hence, each convolutional layer results in a 
dimension shrinkage of 4 rows/columns. The dimension of the 
output feature map was computed according to (7): 

�.K2 	
L��0LMN*O

LP
� 1    (7) 

where �.K2  is the output feature map width, ��� is the input 
feature map width, �Q is the kernel width, R is the padding, 
and �/  is the kernel stride in the horizontal direction. For 
input/output height relation, (7) can be applied using S instead 
of 	�. The input size is 224×224×3. After 4 pooling and 8 
convolutional layers, the output size is reduced to 6×6×128. 
After that, Conv9 and Conv10 layers shrink the output to 
1×1×512 neurons. Using this design, the input image is 
convolved to a single neuron with 512 channels. Afterwards, 
these neurons are fitted to 11 classes in the FC layer by 
applying (2). This layer weights all input neurons and forwards 
them to the Softmax layer, which provides a score for the 11 
classes and performs the classification task as described in (3). 
It is safe to note that the proposed design is a simple stacked 
CNN with a low number of learnable parameters.  

TABLE V.  PROPOSED CNN DESIGN FOR CLASSIFICATION 

Layer Filters & size Output size 
Learnable 

parameters 

Input - 224×224×3 - 

Conv1 5×5×32 220×220×32 2496 

Conv2 5×5×32 216×216×32 25696 

Maxpooling 2×2 108×108×32 - 

Conv3 5×5×64 104×104×64 51392 

Conv4 5×5×64 100×100×64 102592 

Maxpooling 2×2 50×50×64 - 

Conv5 5×5×96 46×46×96 153888 

Conv6 5×5×96 42×42×96 230688 

Maxpooling 2×2 21×21×96 - 

Conv7 5×5×128 17×17×128 307584 

Conv8 5×5×128 13××13×128 409984 

Maxpooling 2×2 6×6×128 - 

Conv9 5×5×256 2×2×256 819968 

Conv10 2×2×512 1×1×512 525824 

Fully connected 11 1×1×11 5643 

Softmax - 1×1×11 - 

 

C. Practical Aspects  

The training process used Stochastic Gradient Descent with 
Momentum (SGDM) [46]. The SGDM training was carried out 
for 10 epochs, with an initial Learning Rate (LR) drop factor of 
0.5 for every 2 epochs. The training set was shuffled for every 
epoch. In YOLOv2 training, the mini-batch size was only six 
images, due to memory constraints, and LR was set to 1×10

-5
. 

Also, LP classification CNN mini-batch size was 120 images 
and LR was set to 2.5×10-2. After the first results, model 
parameter tuning was applied to continue training, using 
ADAM adaptive learning rate optimization [46]. In ADAM, 
the batch size was doubled and LR was halved every 10 
epochs, as long as the final error shows improvement.  
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V. RESULTS AND DISCUSSION 

A MATLAB environment was used to evaluate the 
proposed approach. A GeForce 1060 6GB RAM GPU with 
computational capability of 6.1 was used for training and 
testing. The next subsections describe the evaluation criteria for 
both LPD and LPC. 

A. LPD 

The LP detection performance evaluation was performed 
using Precision (P), Recall (R) and Average Precision (AP) 
values. Any detected LP bounding box having an overlap 
greater than IOU=0.5 with the ground truth bounding box is 
considered as a correct detection. Precision is the percentage of 
the number of correctly detected LPs over the total number of 
detected LPs. R is the percentage of the number of correctly 
detected LPs over the total number of ground truth LPs. AP is 
the area under the precision recall curve. P and R are calculated 
by (8) and (9), where TP is true positive, FP is false positive, 
and FN is false negative detection. 

RGFT���� 	
UV

WONXO
	    (8) 

YFT�HH 	
UV

WONX'
		    (9) 

Table VI shows the proposed detector’s AP performance 
compared to previous approaches presented in [32, 33, 37]. The 
proposed detector outperforms the previous approaches in 
terms of AP performance. It should be noted that in [32] only 
the accuracy for detected over all LPs in a private dataset is 
evaluated. Authors in [37] evaluated only the LPD precision, 
without presenting any AP values. It is evident that the 
proposed approach provides better detection score. 

TABLE VI.  MULTI-SET LPD COMPARISON RESULTS. 

Approach Detector Score Processing time (s) 

[32] Image processing 90.4% AP 0.25 

[33] VGG+ LSTM 98.07% AP Not reported 

[37] 
Image processing + 

Alexnet + SVM 
99.03% P 0.16 

Proposed 
ResNet40+ 

YOLOv2 
99.57% AP 0.09 

 

Those approaches were selected because they evaluated 
performance using images from all the countries of interest 
together in one dataset. Hence, these approaches can be 
considered as multi-national and multi-language LPD methods. 
Furthermore, some researches trained and tested detectors for 
different datasets separately, in order to evaluate the 
performance on each dataset. Table VII provides a comparison 
in terms of P, R and AP performance for these methods. In 
order to conduct a fair comparison, there was a need to train the 
proposed detector on every dataset separately. However, the 
proposed detector had higher R rate and AP on all datasets. 
This is partly due to the large number of different LPs used in 
LPDC2020 and to its superior architecture. It is noted that one 
and two-line LP layout classification was studied in  [34] with 
classification results combined in the character recognition 
stage for multi-national Korean, Taiwanese, Chinese, and Latin 
LPs. Table VIII shows the proposed method’s AP results per 
country. It is apparent that the performance is similar, with 
slightly lower results for KSA LPs. 

TABLE VII.  SINGLE-SET LPD COMPARISON RESULTS 

Approach 
Caltech 

dataset 

Zemris 

dataset 

Medialab 

dataset 
Various datasets 

[34] tiny 

YOLOv3 

P=100% 

R=100% 

98% 

99% 

98.8% 

99.7% 

Taiwan: 100/100% 

Korea: 98.3/99% 

[35] VGG+ 

Faster RCNN 
AP = 98.03% ---- ---- 

China: 98.33% 

Taiwan: 98.80% 

[36] VGG 

+SSD 
AP = 98.4% 97.83% 99.8% ---- 

[38] mask 

RCNN 

P=98.9% 

R=98.6% 
---- ---- 

Taiwan: 99.1% 

China: 99.4% 

Tunisia: 97.9% 

Proposed 

ResNet40+ 

YOLOv2 

P=98.43% 

R=100% 

AP=99.96% 

97.88% 

100% 

99.99% 

98.4% 

99.75% 

99.74% 

Snapshots: 

98/100/99.99% 

UCSD: 

99/100/99.93% 
 

TABLE VIII.  LPD RESULTS FOR LPDC2020 DATASET PER COUNTRY 

Dataset  TR EU USA UAE  KSA 

Proposed 

ResNet40+ YOLOv2 
99.48% 99.91% 99.95% 99.55% 98.67% 

 

B. LPC 

The proposed CNN for classifying the LP’s issuing country, 
language and layout was evaluated in terms of overall 
accuracy. Table IX shows the classification accuracy of the 
proposed CNN. The proposed  CNN classification is only 
0.38% less accurate than VGG16, which is regarded to be 
state-of-the-art, but with significantly fewer learnable 
parameters. The number of learnable parameters of the 
proposed approach is only 1.9% of the parameters used in 
VGG16. As a result, the proposed CNN is faster and less 
complex with a small penalty in classification accuracy. 

TABLE IX.  PROPOSED CNN LP CLASSIFICATION ACCURACY  

CNN Architecture Accuracy Learnable parameters 

VGG16 99.71% 136 M 

Proposed CNN 99.33% 2.635 M 

 
Table X shows the misclassification rates of the proposed 

approach. It is noted that Turkish and European Union’s LPs 
have a higher classification error, as they share the same LP 
style standard. In contrast, BR and UAE have a unique style, 
and USA LPs can include object shapes varying from standard 
LP characters, making it easy to classify them with a small 
error. 

TABLE X.  MISCLASSIFICATION OF LPDC2020-LPC DATASETS 

Country 
Language of 

characters 
Layout 

Number of 

instances 

Misclassified 

LPs 

BR Latin 
One-Line 3714 0 

Two-Line 900 0 

UAE Arabic 
One-Line 500 0 

Two-Line 276 0 

EU Latin 
One-Line 5296 14 

Two-Line 4350 0 

KSA Arabic 
One-Line 290 0 

Two-Line 792 4 

TR Latin 
One-Line 7771 18 

Two-Line 3560 0 

USA Latin One-Line 1401 3 
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VI. CONCLUSION 

Detecting country and language is important to build a 
global ALPR system, while correct layout classification is 
essential in order to read the detected characters in the right 
order. This paper focused on LP detection and classification of 
multi-national and multi-language LPs with different layouts 
from BR, USA, EU, TR, KSA and UAE, proposing a method 
that can detect LPs regardless of their country of origin, 
language or layout. Furthermore, a second classification stage 
was used to recognize LPs’ issuing country, language and 
layout. In addition, a new multi-national, multi-language and 
multi-layout LP dataset was introduced in order to enable 
benchmarking and to close the gap in this field. The developed 
detection and classification approach was based on deep 
learning. The results were promising and the LP detection 
average precision was 99.57%, while the LP classification 
accuracy was 99.33%. The current study paves the way to 
designing a global ALPR system. In the future, an end-to-end 
training process could be developed to test the whole system as 
a unified ALPR model. 
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