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Abstract—Load Flow (LF) analysis is a fundamental and 

significant issue in electric power systems. Because of the 

nonlinearity of the power mismatch equations, the accuracy of 

the nonlinear solvers is important. In this study, a novel and 

efficient nonlinear solver is proposed with active applications to 

LF problems. The formulation of the Proposed Method (PM) and 
its workflow and mathematical modeling for its application in LF 

problems have been discussed. The performance of the PM has 

been validated on the IEEE 14-bus and 30-bus test systems 

against several existing methods. The simulation results show 

that the PM exhibits higher order accuracy, faster convergence 

characteristics, smaller number of iterations, and lesser 
computation times in comparison with the other benchmark 
methods. 
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I. INTRODUCTION  

Most mathematical models arising in science and 
engineering are complex and nonlinear in nature. Nonlinear 
models relate the unknown quantity implicitly within an 
equation or a system of equations. Such models cannot be 
solved using traditional analytical methods, and demand the 
use of efficient and stable numerical methods to yield the 
approximate solutions to the desired accuracy [1, 2]. Such 
models arise in different areas of science and engineering, for 
example the Colebrook’s equation is a nonlinear model to find 
pipe flow systems friction factor implicitly when pipe relative 
roughness and flow Reynolds number are known [3, 4], 
chemical combustions problem, NASA’s wind satellite 
problem [1], and the power flow analysis model of a system 
comprising of buses [5]. LF study is the constant flow analysis 
of a power system. LF study is important for existing power 
systems and consequent optimum performance, and is crucial 
in planning to expand power systems. LF studies serve as a 
basis in different aspects associated with power systems, for 
example power flow optimization, continuation and online 
transmission [5-7]. New methods with robust solutions and fast 
convergence are still searched and these fast methods for the 
LF problems are needed in the field of power systems, 
particularly for optimal power factor extraction and 
improvement, maximum power point tracking in solar 

photovoltaic systems [8], power electronics with stability and 
control [7, 9], steady-state and transient stability of power 
systems [10-13]. One of the old methods for solving the LF 
problem was the Gauss-Siedel (GS) method [5, 14-15]. The 
main drawbacks of the GS method are that it requires a large 
number of iterations and that it converges slowly. Due to these 
drawbacks, another most commonly used method is the 
Newton-Raphson (NR) method, which was proposed for LF 
studies to overcome the convergence problems of the GS [14-
16]. In industrial applications, NR method is used widely and it 
is known as the standard LF method. But, NR method’s ability 
of fast convergence starts to deteriorate when the size of the 
power system increases. For improving the convergence of the 
NR method, new methods such as Fast Decoupled (FD) and 
Power Perturb (PP) [17-18] methods became popular.  

In this paper, a new and efficient nonlinear solver for scalar 
nonlinear equations and vector systems is proposed. The 
application of the PM has been done on the LF problem. The 
performance of the PM is compared with different widely used 
benchmark LF methods on IEEE-14 and IEEE-30 bus standard 
test systems [19]. Through numerical simulations and results, 
the ascendancy of the PM over GS, NR, FD, and PP methods 
has been established from the view-points of higher order 
accuracy, lower power mismatch errors, lesser number of 
iterations, and computational time. 

II. LOAD FLOW PROBLEM FORMULATION 

An electric network model of the power system has the 
objective of efficiently solving voltage and power issues of the 
network at various buses. The LF study gives information 
about the magnitude and the angle of the voltage, active power 
in form of real power, passive component of power, i.e. 
reactive power and power losses for each bus of the power 
scheme. The bus-wise equations of power (real and reactive) 
mismatch can be generally described as: 

∆�� = 	���ℎ −∑ |��	||�	||��	|	cos(�� − � − ��)����     (1) 

∆�� = ���ℎ − ∑ |��	||�	||��	|	sin(�� − � − ��)����    (2) 

where ∆Pi = mismatch in active power at i bus, ∆Qi = 
mismatch in reactive power at i bus, Psch = injected active 
power at i bus, Qsch = injected reactive power at i bus, Vi∠δi = 
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complex voltage at i bus, Yij∠θij = ijth entry of the admittance 
matrix, and n = number of power system buses. Consider 
another equation: 

x = {δPV ∪ δPQ ∪ VPQ}    (3) 

where δPV and δPQ represent the vectors of voltage polar 
angle at PV and PQ buses, whereas VPQ is the magnitude of 
voltage at PQ buses.  

Equation (3) defines the unknown array containing the 
variables of the LF study to be determined. The size of the 
unknown vector is given by (4): 

nx = nPV + 2nPQ    (4) 

where, nPV and nPQ are the PV and PQ buses numbers, 
respectively. The iterative algorithm for determining the 
unknowns is stopped as soon as the pre-specified error 
tolerance has been achieved, which can be defined in terms of 
maximum absolute value of mismatch in the powers from (1) 
and (2), as: 

max{|∆Pi| ∪ |∆Qi|} ≤ ε ∀ i    (5) 

Equation (5) defines a stopping condition of the LF 
problem in achieving at most ε error. In the general form of the 
nonlinear system, (1) and (2) are usually described as: 

�( ) = 0    (6) 
III. SOME EXISTING METHODS FOR LF PROBLEMS  

A. Gauss-Seidel (GS) Method 

The GS method is well-known as the method of successive 
approximations. The nonlinear system of equations to be 
solved can be defined by rearranging (6) as: 

 = �( )    (7) 
Let 	 (")  be the starting approximation at kth iteration for 

the unknown x, then the numerical scheme is  

 "#� = �( ("))    (8) 
When the absolute mismatch of any two consecutive 

iterates is within the desired accuracy bound $, then the desired 
solution is obtained [12]. 

B. Newton-Raphson (NR) Method 

The NR method is used to solve nonlinear scalar equations 
and systems. Given a particular bus system, its LF is often 
analyzed by the NR method, which is easy to execute and has 
simple calculations. To consider the solution of a non-linear 
algebraic equation, with x as a variable, and if x0 is the starting 
guess for the solution, then the Taylor’s series development of 
f(x) in the vicinity of initial guess can be truncated to the first 
order derivative term to yield the NR iterative scheme for each 
iteration (k) to get the new estimated x as: 

 "#� =  " − %(&')
%((&')    (9) 

k = 0,1,2,… 

To solve the nonlinear system (6), we may write (9) as: 

 ("#�) =  (")−)&	( ("))*��( ("))    (10) 
where )&	is an invertible matrix of first order partial derivatives, 
usually known as the Jacobian matrix. The process defined in 
(10) continues until the desired accuracy level has been 
achieved. 

IV. PROPOSED METHOD  

Motivated from some recent studies of new time-efficient 
and convergent nonlinear solvers of different engineering 
problems [1, 3, 4, 17], a two-step method is proposed which is 
cubically convergent to solve scalar nonlinear equations, 
nonlinear systems, and the conventional LF problem arising in 
electrical power systems.  

A. Algorithm of the PM 

The iterative procedure in the PM involves two steps per 
iteration to solve (6). The PM uses only one additional 
midpoint of the Jacobian matrix to calculate each iteration 
when more than one is used in [17]. The main equations of the 
PM in scalar form are (11) and (12). 

+(") =  (") − %(&('))
%((&('))    (11) 

 ("#�) =  (") − %(&('))
%((,-[&(')#/(')])    (12) 

where k = 0,1,… 

B. PM Formulation for the LF Problem 

Equations (11) and (12) for (6) become: 

+(") =  (") + ∆+(")    (13) 
where 

∆+(") = −)&2 (")3*��( (")) 
and 

 ("#�) =  (") + ∆ (")    (14) 
where 

∆ (") = −)& 412 7 
(") + +(")89

*�
�( ") 

Finally, for nonlinear systems, and hence for the LF 
problem (1)-(5), the PM can be extended as: 

+(") =  (") − )&2 (")3*��( ("))    (15) 
 ("#�) =  (") − )& :�; 7 (") + +(")8<*��( ")    (16) 

The complete process of the PM when applied to solve LF 
problems is described by the flow chart of Figure 1. Having 
obtained the bus and line data of a power system, the PM 
approaches the solution. The process terminates as soon as the 
desired accuracy level has been achieved.  

V. RESULTS AND DISCUSSION 

The PM is validated on two well-known bus systems: IEEE 
14- and 30-bus test systems’ data [18, 19]. Both test systems 
are parts of the US power system [19]. The 14-bus system 
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comprises of 5 positions described by generators and 
condensers. On the other hand, the 30-bus system contains a 
combination of synchronous condensers and generators [18]. 
The numerical simulations have been performed in MATLAB 
with standard double precision arithmetic and the error 
tolerance was set at most 1E-08. The PM and its performance 
have been compared with other conventional methods: GS, 
NR, FD and PP. 

 

 
Fig. 1.  Flow chart of the PM 

The results of the PM for the IEEE 14-bus system are 
shown in Table I, with details about bus-wise voltage profiles 
with magnitudes (p.u) and angles (p.u) respectively, along with 
simulated real and reactive powers across generation and load, 
in MW and MVar. The comparison of the voltage profiles, in 
form of magnitude and angles, obtained by the PM and other 
methods are displayed in Figures 2 and 3 on IEEE 14-bus data, 
respectively. The PM provides optimal results similar to the 
other methods’ with better precision and accuracy. The voltage 
magnitudes have been almost higher than those from all other 
methods. Of all methods, a dissimilar behavior has been 
observed for PP on IEEE 14-bus data for magnitude and angle 
of voltages across all buses. For solving the nonlinear voltage 
equations of IEEE 14-bus power system for the preset error 
tolerance the PM takes only 6 iterations, whereas NR, PP, FD 
and GS, respectively require, 11, 59, 74, and 182 iterations, as 
shown in Figure 4. Figure 5 shows the computational time (in 
seconds) of all methods for the same system. Maximum errors 

are shown in Figure 6. The NR and PM methods take almost 
the same execution time on several runs of the program, 
whereas the highest time was found for the FD method. 

TABLE I.  PM SIMULATION RESULTS FOR THE IEEE 14-BUS SYSTEM  

Bus 

Bus Voltage Power (real P and reactive Q) 

Magnitude 

(p.u.) 

Angle 

(p.u.) 

Generation Load 

P Q P Q 

1 1.060 0.000 159.22 38.174 30.380 17.780 

2 1.045 -1.513 232.00 0.120 0.000 0.000 

3 1.010 -13.641 0.000 63.353 131.880 26.600 

4 0.992 -10.429 0.000 0.000 66.920 10.000 

5 0.999 -8.744 0.000 0.000 10.640 2.240 

6 1.070 -17.435 0.000 60.714 15.680 10.500 

7 1.032 -15.028 0.000 0.000 0.000 0.000 

8 1.090 -15.028 0.000 35.849 0.000 0.000 

9 1.008 -17.461 0.000 0.000 41.300 23.240 

10 1.006 -17.871 0.000 0.000 12.600 8.120 

11 1.028 -17.821 0.000 0.000 4.900 2.520 

12 1.036 -18.623 0.000 0.000 8.540 2.240 

13 1.027 -18.643 0.000 0.000 18.900 8.120 

14 0.990 -19.494 0.000 0.000 20.860 7.000 

 

 
Fig. 2.  Comparison of voltage magnitude for IEEE-14 data 

 
Fig. 3.  Comparison of voltage angle for IEEE-14 data 

The simulation results for the IEEE 30-bus system by the 
PM in form of bus-wise voltage magnitudes and voltage angles 
profiles along with simulated real and reactive powers across 
generation and load are shown in Table II. The comparison of 
the voltage magnitude and angles for all methods on the IEEE 
30-bus data are shown in Figures 7 and 8, respectively. 
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Fig. 4.  Iterations taken by all methods for the IEEE 14-bus system 

 
Fig. 5.  Computational time (s) by all methods for the IEEE 14-bus system 

 
Fig. 6.  Maximum errors for all methods for the IEEE 14-bus system 

The PM provides optimal results similar to other methods 
in this case too with better precision and accuracy. The voltage 
magnitudes have been almost higher than those of the other 
methods. Again the PP method shows different results for the 
IEEE 30-bus system in both magnitude and angle voltages 
across all buses. For solving the nonlinear IEEE 30-bus power 
system data for the desired error bound, the PM takes only 4 
iterations, whereas NR, PP, FD and GS, respectively require, 5, 
24, 71, and 93 iterations, as shown in Figure 9. Figure 10 
shows the computational time (in seconds) for all methods for 
the same system, whereas maximum errors are shown in Figure 
11. The NR and PM methods take almost the same execution 
time, with PM taking ascendancy minimum most of the 
program runs, whereas the highest time was found for the FD 
method. 

TABLE II.  PM SIMULATION RESULTS FOR THE IEEE 30-BUS SYSTEM 

Bus 

Bus Voltage Power (real P and reactive Q) 

Magnitude 

(p.u) 

Angle 

(p.u) 

Generation Load 

P Q P Q 

1 1.060 0.000 260.99 -17.021 0.000 0.000 

2 1.043 -5.497 40.000 48.822 21.700 12.700 

3 1.022 -8.004 0.000 0.000 2.400 1.200 

4 1.013 -9.661 0.000 0.000 7.600 1.600 

5 1.010 -14.381 0.000 35.975 94.200 19.000 

6 1.012 -11.398 0.000 0.000 0.000 0.000 

7 1.003 -13.150 0.000 0.000 22.800 10.900 

8 1.010 -12.115 0.000 30.826 30.000 30.000 

9 1.051 -14.434 0.000 0.000 0.000 0.000 

10 1.044 -16.024 0.000 0.000 5.800 2.000 

11 1.082 -14.434 0.000 16.119 0.000 0.000 

12 1.057 -15.302 0.000 0.000 11.200 7.500 

13 1.071 -15.302 0.000 10.424 0.000 0.000 

14 1.042 -16.191 0.000 0.000 6.200 1.600 

15 1.038 -16.278 0.000 0.000 8.200 2.500 

16 1.045 -15.880 0.000 0.000 3.500 1.800 

17 1.039 -16.188 0.000 0.000 9.000 5.800 

18 1.028 -16.884 0.000 0.000 3.200 0.900 

19 1.025 -17.052 0.000 0.000 9.500 3.400 

20 1.029 -16.852 0.000 0.000 2.200 0.700 

21 1.032 -16.468 0.000 0.000 17.500 11.200 

22 1.033 -16.455 0.000 0.000 0.000 0.000 

23 1.027 -16.662 0.000 0.000 3.200 1.600 

24 1.022 -16.830 0.000 0.000 8.700 6.700 

25 1.019 -16.424 0.000 0.000 0.000 0.000 

26 1.001 -16.842 0.000 0.000 3.500 2.300 

27 1.026 -15.912 0.000 0.000 0.000 0.000 

28 1.011 -12.057 0.000 0.000 0.000 0.000 

29 1.006 -17.136 0.000 0.000 2.400 0.900 

30 0.995 -18.015 0.000 0.000 10.600 1.900 
 

 
Fig. 7.  Comparison of voltage magnitude methods for IEEE-30 data 

 
Fig. 8.  Comparison of voltage angle by all methods for IEEE-30 data 

From the exhaustive simulations and consequent 
comparison of results, an encouraging performance of the new 
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and efficient PM has been established for LF problems with 
successful validation on IEEE 14 and IEEE 30 test bus systems 
against conventional methods. The PM exhibits higher order 
accuracy and better convergence characteristics than known 
benchmark methods GS, NR, FD and PP. The PM converges 
quickly, takes lesser computational time, and has a lower 
iteration count in comparison with the other methods. 

 
Fig. 9.  Iteration number comparison for the IEEE 30-bus system 

 
Fig. 10.  Computational time comparison for the IEEE 30-bus system 

 
Fig. 11.  Maximum errors comparison for the IEEE 30-bus system 

VI. CONCLUSION 

In this paper, a new iterative nonlinear solver, referred to as 
PM, was proposed for LF problems. The mathematical model 
of PM for solving the LF problems was presented. The 
structural approach of the PM to efficiently solve nonlinear 
equations of LF problems was systematically presented and 
worked out. The performance of the PM against other 

benchmark LF solvers was tested on IEEE 14- and 30-bus 
systems’ test data, through numerical simulations on 
MATLAB. The main advantages of our PM are its better 
convergence properties, less computational time, and smaller 
iteration number when compared with the standard LF 
methods. 
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