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Abstract—This research proposes a robust correction procedure 

to improve inaccuracies around edges and corners inherent to 

thin shell electromagnetic problems by means of perturbation 

technique. This proposal is developed with three processes: A 

classical thin shell approximation replaced with an impedance-
type interface condition across a surface is first considered and 

then a volume correction is introduced to overcome the thin shell 

approximation. However, the volume correction is quite sensitive 

to cancellation errors, with dramatic effects in the calculation of 

the local fields near edges and corners. Therefore, a robust 

correction procedure is added to improve cancellation errors of 

the volume correction. Each step of the developed method is 
validated on the practical problem.  

Keywords-thin shell approximation; magnetic field; eddy current; 

joule power loss; perturbation method; subproblem method  

I. INTRODUCTION  

Thin Sell (TS) models [1-3] are approximated by a priori 
known 1-D analytical distributions to avoid meshing the thin 
regions and lighten the mesh of surrounding regions with 
Interface Conditions (ICs). However, these ICs generally 
neglect end and border effects, which lead to inaccuracies in 
the calculation of local and global fields in the vicinity of 
geometrical discontinuities near borders and corners, increasing 
with thickness. In order to scope with this difficulty, a sub 
problem technique has been implemented for correcting errors 
surrounding the corners and edges appearing from the TS [4-5, 
11]. But in this development, the volume correction is quite 
sensitive to cancellation errors, with the calculation of local 
fields (magnetic fields, eddy current losses, and joule power 
losses) near edges and corners. In this study, a robust correction 
procedure is embedded in the subproblem technique to 
guarantee the obtained solutions from volume corrections 
without cancellation errors in magnetic materials. The method 
is extended in the hearth of the Sub Problem Method (SPM), 
allowing a complete solution to express as a sum of Sub 
Problems (SPs) solutions, already to applied numerous 
corrections and problem splitting [4-5]. The extensions are 
herein implemented for the magnetic vector potential Finite 
Element (FE) magnetodynamic formulation, paying special 
attention to the proper discretization of the constraints involved 
in each SP. 

II. SEQUENCE OF THE PERTURBATION TECHNIQUE 

A. Definition of Coupled Sub Problems 

Based on the SPM strategy [3-5], the scenario of the 
perturbation method is herein considered in two steps: A 
problem attending with the stranded inductor and TS model is 
first solved on a simplified mesh. The inaccuracy on TS 
solution is then improved by the volume correction taken by a 
robust correction procedure in order to overcome the 
cancellation error [4-7]. The relationship between SPs is 
constrained by surface sources (SSs) or volume sources (VSs), 
where SSs show changes of ICs across surfaces from previous 
SPs, and VSs point out changes of material properties of 
volume thin regions. Each SP is directly performed on its own 
mesh without depending on other meshes or solving again a 
new full problem for each new set of parameters as a traditional 
finite element method [7, 8, 10].  

B. Canonical Magnetodynamic Problem 

In the SP scenario, a canonical magnetodynamic problem p 
is defined in a domain Ω� , with boundary �Ω� = Γ� =
Γ�,� ∪ Γ
,�. It should be noted that the subscript p refers to the 
associated SP p. The eddy current conducting part of Ω�  is 
denoted Ω�,�  and the non-conducting one Ω�,�

� , 

with	Ω� = Ω�,� ∪ Ω�,�� . Stranded inductors belong to Ω�,�
� . The 

equations, material relations, and boundary conditions (BCs) of 
the SP p are [4-7]: 

curl	�� = ��, div�� = 0, curl�� = −����,    (1a-b-c) 

�� = ������ + � ,�, �� = !��� + � ,�    (2a-b) 
[# × ��]&',( = )*,�, # × ��|&',( = 0    (3a-b) 

where �� is the magnetic field, �� is the magnetic flux density, 
�� is the electric field, � ,� is the electric current density, �� is 
the magnetic permeability, !� is the electric conductivity and n 
is the unit normal exterior to Ω�.   

The source fields � ,�  and � ,�  in (2 a-b) are VSs. In the 
frame of SPM, the field � ,� is usually considered as a remnant 
field in magnetic materials and expressed changes of 
permeability. The field � ,�  is an imposed electric current 
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density in inductors and presented changes of conductivity. For 
that, the changes from SP u (�, and !,  to SP p (�� and !�), 
� ,� and � ,�) are defined [4-7]: 

� ,� = (���� − �,��)�,, 			� ,� = (!� − !,)�,    (4a-b) 

The total fields to be related by the uploaded relations 

�	 = 	����(�� + �,)  and �  = !�/�� + �,0 [3, 4]. The source 
field )*,� in (3a) is SSs. In general, these SSs are defined as 
zero for classical homogeneous BCs. ICs can define their 
discontinuities through any interface 1� (with sides 1�2 and 1��) 
in Ω�, with the notation [∙]4( = |4(5 − |4(6. On the other hand, 
they can be considered as SSs for particular phenomena 
appearing at the both sides (1�2 and 1��) of the thin regions [3, 
4]. 

C. Thin Shell Finite Element Model 

The constraints between the TS model and volume 
corrections are expressed via VSs and SSs. For the magnetic 
vector potential formulation (b-conformal formulation) in the 
TS model [3], these sources are defined via the BCs and ICs of 
impedance-type boundary conditions (IBC) associated with 
solutions from previous SP which can be a stranded inductor 
alone or the inductors with the TS model. Therefore, the 
constraint from the TS model to the volume correction 
problems, or from the volume corection to the robust correction 
procedure, can be obtained from [3], i.e.:  

[# × ��]4( = −!7��/29�,� + 9:,�0    (5) 

# × ��|4(5 =	 �; <!7��/29�,� + 9:,�0 + �
=> 9:,�? − # × �,|4(5  

=			 �; <!7��/29�,� + 9:,�0 + �
=> 9:? − )*,�    (6) 

where 9:,�  and @�,� 	 are respectively the discontinuous and 
continuous components of the field 9�. It should be noted that 
9:,� is considered as zero on the negative side Γ� ,�� 	of the TS, 
which cancels the magnetic flux entering there [3]. A  (the 
thickness of the TS), B (the skin depth) and 7 are also given 
[3]. The discontinuity [−# × �,|4(5 in (6) is really an SS for 
the volume correction.  

III. SEQUENCE OF WEAK FORMULATIONS 

A. b-Conformal Formulation 

The weak �� -conformal formulation for problem p is 
achieved from the weak form of the Ampere’s law (1a), i.e. [4-

7]: 

(����curl	9�, curl	9�
C )DE + (!���9�, 9�

C )F + (!�grad	I� , 9�
C )DJ,( +

(� ,� , curl	9�C )DJ,( +(� ,� , curl	9�C )DJ,( + 〈# × �� , 9�C 〉&',(�M( +
〈# × �� , 9�

C 〉&N,( + 〈−[#× ��]4( , 9�
C 〉M( = (� , 9�

C )DO,(	    (7) 
∀9�

C ∈ R�
�/Ω�0  

where R��/Ω�0  is a gauged curl-conform function space 
presented in Ω�, containing the basis functions for 9� and for 
the test function 9�

C . Factors (. , . )DE and 〈. , . 〉&E are respectively 
notations of a volume intergal in Ω� and a surface intergal on Γ�  

of the product of their vector field arguments. The surface 
integral term on Γ�,�	accounts for natural BCs of type (3 b), 
which is usually zero. The term 〈−[# × ��]4( , 9�C 〉M(  in (9) is 
the TS model and can be expressed as [3]: 

〈[# × ��]4(, 9�C 〉M( = 〈[# × ��]4(, 9�,�C 〉M(  
+〈# × ��|M(5 , 9:,�

C 〉M(5 + 〈# × ��|M(6 , 9:,�
C 〉M(6    (8) 

where 9:,�
C  and 9�,�C  are the test functions and 9:,�

C  is equal to 

zero on the negative side Γ�,�� = γ�,��  of the TS [3]. The terms 
〈[# × ��]4( , 9�,�

C 〉M(  and 〈# × ��|M(5 , 9:,�
C 〉M(5  are already 

defined in (5) and (6). Thus, (8) becomes: 

〈[# × �]4(, 9�C 〉M( = −〈!7��/29�,� + 9:,�0,9�,�C 〉M( +   
�
; 〈<!7��/29�,� + 9:,�0 + �

=> 9:? , 9�,�C 〉M( − )*,�      (9) 

B. Volume Correction and Robust Correction Procedure 

Replacing TS Representation 

The TS solution is obtained by combining (7), (8) and (9). 
The solution is now improved by the volume correction (e.g. 
problem k) via VSs (� ,�, curl	9�

C )DJ,( (� ,� , curl	9�
C )DJ,(  given 

by (4a) and (4b). This means that these fields need to be 
transferred from the mesh of the TS problem p to the mesh of 
next problem k (volume correction k) via a projection method 
[9]. For that, the weak form for the problem k is written as 

(�U
��curl	9U, curl	9U

C )DV + (!U��9U , 9U
C )DJ,V 

+(!Ugrad	IU, 9U
C )DJ,V + ((�U

�� − ����)(curl	9�, curl	9U
C )DV  

+〈[# × �U]4W,V, 9U
C 〉MW,V +	(!U��9�, 9U

C )DJ,V = 0,	 
∀9U

C ∈ RU
�(ΩU)    (10) 

At the same time to the VSs in (10), the SSs related to ICs 
[4-5] have to extract the TS discontinuities. Thus, the trace 
# × �U]4W,V  in (10) is strongly fixed as:  

〈[# × �U]4W,V , 9U
C 〉MW,V = −〈[# × ��]4W,V , 9U

′ 〉γW,V    (11) 
At the discrete level, the source field 9� solved in the mesh 

of the TS problem p is projected to the mesh of problem k in 
(10), with Ω�,U  limited to the volume correction, which thus 
reduces the computational effort of the process of projection. 
The volume correction in (10) is really sensitive to cancellation 

errors, with dramatic effects on the calculation of the field 9� 
(see Figure 5 in [6]). In order to avoid the cancellation error, 
we need to combine a problem k-a  with:  

�U�X = �U�X
�� �U�X +	(�U�X

�� − ����)��    (12) 

Considering a perfect magnetic region in Ω�,U  (�U�X =
∞, �U�X�� = 0), and a problem k-b with: 

�U�Z = �U�Z�� �U�Z +	(�U�Z
�� − �U�X

�� )(�U�X + ��)    (13) 
presenting a change to the actual permeability ( �U�Z =
�X�,�X[ = �U). The problem k-a uses a SS only contributing on 
the positive side of Γ�,U2  of Γ�,U, that is: 
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[# × �U�X]&J,V= # × �U�X|&J,V5 = −#× ��|&J,V5 = � ,\,U�X    (14) 

with � ,U�X  = 0 and �U�X 	≠ 0.  The trace # × ��|&J,V5  is 

originally presented in (18) for the problem p limited to Γ�,U = 
= Γ�,�. It maybe also naturally presented via the volume in (10), 
that is: 

〈[# × �U�X]&J,V , 9U
C 〉&J,V = − 〈# × ��|&J,V5 , 9U

C 〉&J,V =
(����curl	9� , curl	9U

C |&J,V5 )D^_     (15) 

where Ω`a is limited to one single layer of FEs touching Γ�,U2 , 
because it involves only the associated trace # ×9U

C |&J,V5 [5] 

( 9U�X
C = 9U�Z

C = 9U
C  because of the same property on the 

mesh). For the problem k-b, the VS has: 

� ,U�Z =	(�U�Z
�� − �U�X

�� )(�U�X + ��)    (16) 
with �U�Z = �X�,�X[ = �U  and �U�X��  = 0. Both problems k-a 
and k_b are being solved at the same time, with the SS 

�*,U = 	# × ��|&J,V5 = �*,U�X and the resulting relation is: 

�U = �U�X + �U�Z = 
−��

���� + �U�Z�� �U�Z +	�U�Z
�� /�U�X + ��0 = 

= �U
��/�U�X + ��0 + (�U

�� −��
��)��    (17) 

This procedure needs the projection of the source field in 
the added magnetic region (for VSs) as well as in the layer of 
FEs surrounding this region (for SSs). 

C. Projections of Solutions between Meshes 

In the SPM strategy, the TS is considered as an SS in a sub-
model Ω�,U which is a subset of ΩU. At the discrete level, the 
source field from the previous problem (e.g. 9� in the previous 
mesh problem p) is projected in the mesh of the current (new) 
problem (e.g. problem k). This can be done via a projection 
method [8] of its curl limited to Ω�,U, i.e.: 

/curl	9�,U��\bc , curl	9U
C 0DJ,V

= /curl	9�, curl	9U
C 0DJ,V

, 

∀9U
C ∈ dU

�(Curl, ΩU)    (18) 
where dU

�/Curl, Ω�,U0 is a gauged curl-conform function space 
for the k-projected source 9�,U��\bc  and the test function 9U

C . 

IV. NUMBERICAL TEST  

The numerical test is an actual problem including an 
inductor located below a shielding thin plate (Figure 1).  

 

 
Fig. 1.  Flux geometry of inductor and thin plate (dimensions in mm) 

The inductor carries a fixed current density (excitation 
current I =1A, frequency f = 50 Hz, number of turns N = 1000). 

The test problem is solved in three steps: 

• Step 1: The stranded inductors with the TS model 
approximations (SP p) are first solved 

• Step 2: The volume correction (SP k) is given to overcome 
the TS approximations at step 1 

• Step 3: The robust correction procedure is considered to 
improve cancelation errors at step 2 

The TS solution SP p on the magnetic vector potential at 
step 1 considered with the thin plate and the stranded inductor 
is shown in Figure 2(a). Next, a volume correction SP k then 
replaces the TS approximation with an actual volume covering 
the plates and their surroundings without including the stranded 
inductor anymore (Figure 2(b)). As presented, this volume 
correction is very sensitive to cancellation errors, with dramatic 
effects on the calculation, thus it is improved by a robust 
correction procedure (Figure 2(c)).  

 

(a) 

 

(b) 

 

(c) 

 

Fig. 2.  Flux lines (real part) on the magnetic vector potential for (a) the TS 

solution, (b) volume correction with cancellation errors, and (c) robust 

correction procedures (c) (d=10mm, f=50Hz, �\=100 and !=59MS/m). 
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The relative robust correction procedure of the longitudinal 
magnetic flux along the thin plate increases with the different 
thicknesses (f= 50 Hz, �\  = 100 and ! = 59 MS/m), as shown 
in Figure 3. For thickness d = 10 mm, it can reach several tens 
percent in the vicinity near edges and corners of the plate, i.e. 
70 %, with f = 50 Hz, �\  = 100, !  = 59 MS/m and 
B = 1.977 mm. For the lower thickness d = 2.5 mm, the error is 
lower than 15% from the middle to the end. 

 

 
Fig. 3.  Relative robust correction procedure of the longitudinal magnetic 

flux along the thin plate, with different thicknesses (f=50Hz, �\ =100 and 
!=59MS/m). 

(a) 

 

(b) 

 

(c) 

 

Fig. 4.  Distribution of eddy current densities with (a) the TS solution, (b) 

cancellation error, and (c) the robust procedure (d=10mm, f=50Hz, �\=100and 
!=59MS/m). 

 

Fig. 5.  Joule power loss densities with TS solution, volume correction 

with cancellation error, and the robust procedure along the thin plate 

(d=10mm, f=50Hz, �\=100 and !=59MS/m). 

The eddy current density of the TS SP p (Figure 4(a)) is 
corrected by the volume correction SP k (Figure 4(b)) without 
taking the cancellation error into account. The robust correction 
procedure (Figure 4(c)) is proposed to improve the cancellation 
errors to overcome the volume correction at step 2. The error 
obtained is 32% at the plate end. The inaccuracy on the joule 
power loss density along the half plate of the TS solution 
approximation SP p, the volume correction SP k and the robust 
correction procedure are pointed out in Figure 5, with d = 10 
mm, f = 50 Hz, �\  = 100, ! = 59 MS/m. The significant errors 
approximately reach 58% between the TS solution SP p and the 
volume correction SP k, or nearly 20% between the volume 
correction SP k and the robust correction procedure. The robust 
correction procedure is then compared with the reference 
solution computed from the traditional Finite Element Method 
(FEM) [7, 8, 10]. This is an agreement to illustrate a very 
suitable validation of the robust correction procedure 
developed in the perturbation technique. 

V. DISCUSSION AND CONCLUSIONS 

Robust correction procedure with the  magnetic vector 
potential formulation has been sucessfully developed via a 
perturbation technique in order to improve the cancellation 
errors on the local fields of magnetic vector potential, magnetic 
flux, eddy current loss, and Joule power loss density inherent to 
the TS approximation and the volume correction. The 
computed results of the extend method are close to the 
reference FEM calculation solution [7, 8, 10], which is a very 
good validation of the studied technique. The development has 
been successfully done with the linear case in the frequency 
domain. Extension of the method could be further performed in 
two-way coupling [12]. All the steps of the technique have 
been validated and applied to the practical problem. 
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